Step 1: Analyzing the given proposition
We are given the proposition:
\[
p \rightarrow ((\neg p) \vee q)
\]
This is evaluated as FALSE.
Recall that a conditional proposition \( p \rightarrow q \) is false only when \( p \) is true and \( q \) is false. Therefore, for the given proposition to be false:
- \( p \) must be true,
- \( (\neg p) \vee q \) must be false.
Step 2: Simplifying the expression \( (\neg p) \vee q \)
For \( (\neg p) \vee q \) to be false:
- \( \neg p \) must be false, so \( p \) must be true (which is already given).
- \( q \) must be false.
Thus, we conclude that:
- \( p = \text{True} \),
- \( q = \text{False} \).
Step 3: Evaluating \( P_1 \)
Now, evaluate the first proposition \( P_1: \neg (p \rightarrow \neg q) \). Since \( p = \text{True} \) and \( q = \text{False} \), first evaluate \( p \rightarrow \neg q \):
\[
p \rightarrow \neg q = \text{True} \rightarrow \text{True} = \text{True}
\]
Now, negate this result:
\[
\neg (p \rightarrow \neg q) = \neg \text{True} = \text{False}
\]
Thus, \( P_1 \) is FALSE.
Step 4: Evaluating \( P_2 \)
Next, evaluate the second proposition \( P_2: (p \wedge \neg q) \wedge ((\neg p) \vee q) \). Given that \( p = \text{True} \) and \( q = \text{False} \), evaluate each part:
- \( p \wedge \neg q = \text{True} \wedge \text{True} = \text{True} \),
- \( (\neg p) \vee q = \text{False} \vee \text{False} = \text{False} \).
Thus:
\[
P_2 = \text{True} \wedge \text{False} = \text{False}
\]
Therefore, \( P_2 \) is also FALSE.
Step 5: Final Answer
Both \( P_1 \) and \( P_2 \) are FALSE:
Both \( P_1 \) and \( P_2 \) are FALSE