We are tasked with simplifying the following expression: \[ \frac{\sin(\pi + x) \cos\left(\frac{\pi}{2} + x\right) \tan\left(\frac{3\pi}{2} - x\right) \cot(2\pi - x)}{\sin(2\pi - x) \cos(2\pi + x) \csc(-x) \sin\left(\frac{3\pi}{2} + x\right)}. \]
Step 1: Simplify Trigonometric Terms
Using well-known trigonometric identities, we have:
\( \sin(\pi + x) = -\sin(x), \)
\( \cos\left(\frac{\pi}{2} + x\right) = -\sin(x), \)
\( \tan\left(\frac{3\pi}{2} - x\right) = -\cot(x), \)
\( \cot(2\pi - x) = -\cot(x), \)
\( \sin(2\pi - x) = -\sin(x), \)
\( \cos(2\pi + x) = \cos(x), \)
\( \csc(-x) = -\csc(x), \)
\( \sin\left(\frac{3\pi}{2} + x\right) = -\cos(x). \)
Now, substitute these identities into the original expression:
\[ \frac{\sin(\pi + x) \cos\left(\frac{\pi}{2} + x\right) \tan\left(\frac{3\pi}{2} - x\right) \cot(2\pi - x)}{\sin(2\pi - x) \cos(2\pi + x) \csc(-x) \sin\left(\frac{3\pi}{2} + x\right)}. \]
Step 2: Substitute the Simplified Terms
The numerator becomes: \[ \sin(\pi + x) \cdot \cos\left(\frac{\pi}{2} + x\right) \cdot \tan\left(\frac{3\pi}{2} - x\right) \cdot \cot(2\pi - x) = (-\sin x)(-\sin x)(-\cot x)(-\cot x). \]
Simplifying this gives: \[ \text{Numerator} = \sin^2(x) \cdot \cot^2(x). \]
The denominator simplifies as follows: \[ \sin(2\pi - x) \cdot \cos(2\pi + x) \cdot \csc(-x) \cdot \sin\left(\frac{3\pi}{2} + x\right) = (-\sin x)(\cos x)(-\csc x)(-\cos x). \]
Simplifying this gives: \[ \text{Denominator} = \sin(x) \cdot \cos^2(x) \cdot \csc(x). \]
Step 3: Simplify the Final Expression
Now, the expression becomes: \[ \frac{\sin^2(x) \cdot \cot^2(x)}{\sin(x) \cdot \cos^2(x) \cdot \csc(x)}. \]
Substitute \( \cot(x) = \frac{\cos(x)}{\sin(x)} \) and \( \csc(x) = \frac{1}{\sin(x)} \) into the equation: \[ \frac{\sin^2(x) \cdot \left(\frac{\cos^2(x)}{\sin^2(x)}\right)}{\sin(x) \cdot \cos^2(x) \cdot \frac{1}{\sin(x)}}. \]
Simplify the expression: \[ \frac{\cos^2(x)}{\cos^2(x)} = 1. \]
Final Answer: The value of the expression simplifies to: \[ \boxed{1 \, \text{(Option C)}}. \]
If
\( p \): It is raining today,
\( q \): I go to school,
\( r \): I shall meet my friends,
and \( s \): I shall go for a movie, then which of the following represents:
"If it does not rain or if I do not go to school, then I shall meet my friend and go for a movie?"
The remainder on dividing $5^{99}$ by 11 is
Given, the function \( f(x) = \frac{a^x + a^{-x}}{2} \) (\( a > 2 \)), then \( f(x+y) + f(x-y) \) is equal to