Prove that if a plane has the intercepts a, b, c and is at a distance of P units from the origin, then \(\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2} =\frac {1}{p^2}\).
The equation of a plane having intercepted a, b, c with x, y and z axes respectively is given by,
\(\frac xa+\frac yb+\frac zc=1\) ...(1)
The distance (p) of the plane from the origin is given by,
\(P=|\frac {\frac 0a+\frac 0b+\frac 0c-1}{\sqrt {(\frac 1a)^2+(\frac 1b)^2+(\frac 1c)^2}}|\)
⇒ \(p=\frac {1}{\sqrt{\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2} }}\)
⇒ \(p^2=\frac {1}{{\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2} }}\)
⇒ \(\frac {1}{p^2}=\frac{1} {a^2}+\frac {1}{b^2}+\frac {1}{c^2} \)
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
A school is organizing a debate competition with participants as speakers and judges. $ S = \{S_1, S_2, S_3, S_4\} $ where $ S = \{S_1, S_2, S_3, S_4\} $ represents the set of speakers. The judges are represented by the set: $ J = \{J_1, J_2, J_3\} $ where $ J = \{J_1, J_2, J_3\} $ represents the set of judges. Each speaker can be assigned only one judge. Let $ R $ be a relation from set $ S $ to $ J $ defined as: $ R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\} $.