Prove that if a plane has the intercepts a, b, c and is at a distance of P units from the origin, then \(\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2} =\frac {1}{p^2}\).
The equation of a plane having intercepted a, b, c with x, y and z axes respectively is given by,
\(\frac xa+\frac yb+\frac zc=1\) ...(1)
The distance (p) of the plane from the origin is given by,
\(P=|\frac {\frac 0a+\frac 0b+\frac 0c-1}{\sqrt {(\frac 1a)^2+(\frac 1b)^2+(\frac 1c)^2}}|\)
⇒ \(p=\frac {1}{\sqrt{\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2} }}\)
⇒ \(p^2=\frac {1}{{\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2} }}\)
⇒ \(\frac {1}{p^2}=\frac{1} {a^2}+\frac {1}{b^2}+\frac {1}{c^2} \)
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
Commodities | 2009-10 | 2010-11 | 2015-16 | 2016-17 |
---|---|---|---|---|
Agriculture and allied products | 10.0 | 9.9 | 12.6 | 12.3 |
Ore and minerals | 4.9 | 4.0 | 1.6 | 1.9 |
Manufactured goods | 67.4 | 68.0 | 72.9 | 73.6 |
Crude and petroleum products | 16.2 | 16.8 | 11.9 | 11.7 |
Other commodities | 1.5 | 1.2 | 1.1 | 0.5 |
Categories of Reporting Area | As a percentage of total cultivable land (1950-51) | As a percentage of total cultivable land (2014-15) | Area (1950-51) | Area (2014-15) |
---|---|---|---|---|
Culturable waste land | 8.0 | 4.0 | 13.4 | 6.8 |
Fallow other than current fallow | 6.1 | 3.6 | 10.2 | 6.2 |
Current fallow | 3.7 | 4.9 | 6.2 | 8.4 |
Net area sown | 41.7 | 45.5 | 70.0 | 78.4 |
Total Cultivable Land | 59.5 | 58.0 | 100.00 | 100.00 |