Prove that if a plane has the intercepts a, b, c and is at a distance of P units from the origin, then \(\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2} =\frac {1}{p^2}\).
The equation of a plane having intercepted a, b, c with x, y and z axes respectively is given by,
\(\frac xa+\frac yb+\frac zc=1\) ...(1)
The distance (p) of the plane from the origin is given by,
\(P=|\frac {\frac 0a+\frac 0b+\frac 0c-1}{\sqrt {(\frac 1a)^2+(\frac 1b)^2+(\frac 1c)^2}}|\)
⇒ \(p=\frac {1}{\sqrt{\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2} }}\)
⇒ \(p^2=\frac {1}{{\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2} }}\)
⇒ \(\frac {1}{p^2}=\frac{1} {a^2}+\frac {1}{b^2}+\frac {1}{c^2} \)
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}