Prove that if a plane has the intercepts a, b, c and is at a distance of P units from the origin, then \(\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2} =\frac {1}{p^2}\).
The equation of a plane having intercepted a, b, c with x, y and z axes respectively is given by,
\(\frac xa+\frac yb+\frac zc=1\) ...(1)
The distance (p) of the plane from the origin is given by,
\(P=|\frac {\frac 0a+\frac 0b+\frac 0c-1}{\sqrt {(\frac 1a)^2+(\frac 1b)^2+(\frac 1c)^2}}|\)
⇒ \(p=\frac {1}{\sqrt{\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2} }}\)
⇒ \(p^2=\frac {1}{{\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2} }}\)
⇒ \(\frac {1}{p^2}=\frac{1} {a^2}+\frac {1}{b^2}+\frac {1}{c^2} \)
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
(a) State the following:
(i) Kohlrausch law of independent migration of ions
A solution of glucose (molar mass = 180 g mol\(^{-1}\)) in water has a boiling point of 100.20°C. Calculate the freezing point of the same solution. Molal constants for water \(K_f\) and \(K_b\) are 1.86 K kg mol\(^{-1}\) and 0.512 K kg mol\(^{-1}\) respectively.
Write the reactions involved when D-glucose is treated with the following reagents: (a) HCN (b) Br\(_2\) water
Identify A and B in each of the following reaction sequence:
(a) \[ CH_3CH_2Cl \xrightarrow{NaCN} A \xrightarrow{H_2/Ni} B \]
(b) \[ C_6H_5NH_2 \xrightarrow{NaNO_2/HCl} A \xrightarrow{C_6H_5NH_2} B \]
Would you expect benzaldehyde to be more reactive or less reactive in nucleophilic addition reactions than propanal? Justify your answer.