Question:

The vector equations of two lines are given as:

Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]

Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]

Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.

Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Given Vector Equations of Lines

Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \] Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]

Step 1: Direction Vectors

\[ \vec{d}_1 = \langle 4, 6, 12 \rangle,\quad \vec{d}_2 = \langle 6, 9, 18 \rangle \] Since \[ \vec{d}_2 = \frac{3}{2} \cdot \vec{d}_1, \] the direction vectors are scalar multiples ⇒ lines are parallel.

Step 2: Check for Coincidence

Take position vectors of a point on each line: \[ \vec{a}_1 = \langle 1, 2, -4 \rangle,\quad \vec{a}_2 = \langle 3, 3, -5 \rangle \] Compute: \[ \vec{a}_2 - \vec{a}_1 = \langle 2, 1, -1 \rangle \] Check if this is a scalar multiple of \( \vec{d}_1 \): It is not, so lines are parallel but not coincident.

Step 3: Find Shortest Distance Between Lines

Use formula: \[ \text{Distance} = \frac{| (\vec{a}_2 - \vec{a}_1) \times \vec{d}_1 |}{|\vec{d}_1|} \] Let: \[ \vec{a}_2 - \vec{a}_1 = \langle 2, 1, -1 \rangle,\quad \vec{d}_1 = \langle 4, 6, 12 \rangle \] Compute cross product: \[ \vec{v} \times \vec{d}_1 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 4 & 6 & 12 \end{vmatrix} = \hat{i}(1 \cdot 12 - (-1) \cdot 6) - \hat{j}(2 \cdot 12 - (-1) \cdot 4) + \hat{k}(2 \cdot 6 - 1 \cdot 4) \] \[ = \hat{i}(12 + 6) - \hat{j}(24 + 4) + \hat{k}(12 - 4) = \hat{i}(18) - \hat{j}(28) + \hat{k}(8) \Rightarrow \vec{N} = \langle 18, -28, 8 \rangle \] \[ |\vec{N}| = \sqrt{18^2 + 28^2 + 8^2} = \sqrt{324 + 784 + 64} = \sqrt{1172} \] \[ |\vec{d}_1| = \sqrt{4^2 + 6^2 + 12^2} = \sqrt{16 + 36 + 144} = \sqrt{196} = 14 \] \[ \text{Distance} = \frac{\sqrt{1172}}{14} \approx \frac{34.24}{14} \approx \boxed{2.45} \]

✅ Final Conclusion:

  • Lines are parallel
  • They are not coincident
  • Shortest distance between them is approximately: \[ \boxed{2.45} \]
Was this answer helpful?
0
0