Three points are collinear if the vectors formed by them are parallel.
Let us consider: \[ \vec{AB} = \vec{B} - \vec{A} = (2 - (-1),\ 8 - (-1),\ \lambda - 2) = (3, 9, \lambda - 2) \] \[ \vec{BC} = \vec{C} - \vec{B} = (3 - 2,\ 11 - 8,\ 6 - \lambda) = (1, 3, 6 - \lambda) \]
Since the vectors \( \vec{AB} \) and \( \vec{BC} \) are in the same direction (i.e., collinear), one must be a scalar multiple of the other: \[ \vec{AB} = k \cdot \vec{BC} \] Comparing components: \[ 3 = k \cdot 1 \Rightarrow k = 3 \] \[ 9 = k \cdot 3 = 3 \cdot 3 \Rightarrow \text{(consistent)} \] \[ \lambda - 2 = k \cdot (6 - \lambda) = 3(6 - \lambda) \]
Now solve the equation: \[ \lambda - 2 = 18 - 3\lambda \Rightarrow \lambda + 3\lambda = 18 + 2 \Rightarrow 4\lambda = 20 \Rightarrow \lambda = 5 \]
\[ \boxed{\lambda = 5} \]
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).