Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
We are to find the vector equation of a line passing through the point \( (1, 2, -3) \) and perpendicular to both the lines:
Line 1: \[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \] Line 2: \[ \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
Direction vector of Line 1: \[ \vec{d}_1 = \langle 3, 7, -16 \rangle \] Direction vector of Line 2: \[ \vec{d}_2 = \langle 3, -8, -5 \rangle \]
The required line is perpendicular to both lines, so we compute the cross product:
\[ \vec{n} = \vec{d}_1 \times \vec{d}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 7 & -16 \\ 3 & -8 & -5 \end{vmatrix} \] \[ = \hat{i}(7 \cdot (-5) - (-16) \cdot (-8)) - \hat{j}(3 \cdot (-5) - (-16) \cdot 3) + \hat{k}(3 \cdot (-8) - 7 \cdot 3) \] \[ = \hat{i}(-35 - 128) - \hat{j}(-15 + 48) + \hat{k}(-24 - 21) \] \[ = \hat{i}(-163) - \hat{j}(33) + \hat{k}(-45) \Rightarrow \vec{n} = \langle -163, -33, -45 \rangle \]
Line passes through point \( \vec{a} = \langle 1, 2, -3 \rangle \)
\[ \vec{r} = \vec{a} + \lambda \vec{n} = \langle 1, 2, -3 \rangle + \lambda \langle -163, -33, -45 \rangle \]
\[ x = 1 - 163\lambda,\quad y = 2 - 33\lambda,\quad z = -3 - 45\lambda \]
The vector equation is: \[ \boxed{ \vec{r} = \langle 1, 2, -3 \rangle + \lambda \langle -163, -33, -45 \rangle } \]
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]