Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
We are to find the vector equation of a line passing through the point \( (1, 2, -3) \) and perpendicular to both the lines:
Line 1: \[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \] Line 2: \[ \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
Direction vector of Line 1: \[ \vec{d}_1 = \langle 3, 7, -16 \rangle \] Direction vector of Line 2: \[ \vec{d}_2 = \langle 3, -8, -5 \rangle \]
The required line is perpendicular to both lines, so we compute the cross product:
\[ \vec{n} = \vec{d}_1 \times \vec{d}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 7 & -16 \\ 3 & -8 & -5 \end{vmatrix} \] \[ = \hat{i}(7 \cdot (-5) - (-16) \cdot (-8)) - \hat{j}(3 \cdot (-5) - (-16) \cdot 3) + \hat{k}(3 \cdot (-8) - 7 \cdot 3) \] \[ = \hat{i}(-35 - 128) - \hat{j}(-15 + 48) + \hat{k}(-24 - 21) \] \[ = \hat{i}(-163) - \hat{j}(33) + \hat{k}(-45) \Rightarrow \vec{n} = \langle -163, -33, -45 \rangle \]
Line passes through point \( \vec{a} = \langle 1, 2, -3 \rangle \)
\[ \vec{r} = \vec{a} + \lambda \vec{n} = \langle 1, 2, -3 \rangle + \lambda \langle -163, -33, -45 \rangle \]
\[ x = 1 - 163\lambda,\quad y = 2 - 33\lambda,\quad z = -3 - 45\lambda \]
The vector equation is: \[ \boxed{ \vec{r} = \langle 1, 2, -3 \rangle + \lambda \langle -163, -33, -45 \rangle } \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.