Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
We are to find the vector equation of a line passing through the point \( (1, 2, -3) \) and perpendicular to both the lines:
Line 1: \[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \] Line 2: \[ \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
Direction vector of Line 1: \[ \vec{d}_1 = \langle 3, 7, -16 \rangle \] Direction vector of Line 2: \[ \vec{d}_2 = \langle 3, -8, -5 \rangle \]
The required line is perpendicular to both lines, so we compute the cross product:
\[ \vec{n} = \vec{d}_1 \times \vec{d}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 7 & -16 \\ 3 & -8 & -5 \end{vmatrix} \] \[ = \hat{i}(7 \cdot (-5) - (-16) \cdot (-8)) - \hat{j}(3 \cdot (-5) - (-16) \cdot 3) + \hat{k}(3 \cdot (-8) - 7 \cdot 3) \] \[ = \hat{i}(-35 - 128) - \hat{j}(-15 + 48) + \hat{k}(-24 - 21) \] \[ = \hat{i}(-163) - \hat{j}(33) + \hat{k}(-45) \Rightarrow \vec{n} = \langle -163, -33, -45 \rangle \]
Line passes through point \( \vec{a} = \langle 1, 2, -3 \rangle \)
\[ \vec{r} = \vec{a} + \lambda \vec{n} = \langle 1, 2, -3 \rangle + \lambda \langle -163, -33, -45 \rangle \]
\[ x = 1 - 163\lambda,\quad y = 2 - 33\lambda,\quad z = -3 - 45\lambda \]
The vector equation is: \[ \boxed{ \vec{r} = \langle 1, 2, -3 \rangle + \lambda \langle -163, -33, -45 \rangle } \]
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]