Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
Line 1 (from symmetric form): \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} = \lambda \Rightarrow \vec{r}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \]
Line 2 (from symmetric form): \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z = \mu \Rightarrow \vec{r}_2 = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} + \mu \begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix} \]
If the lines intersect, then:
\[ \vec{r}_1 = \vec{r}_2 \Rightarrow \begin{bmatrix} 1 + 2\lambda \\ 2 + 3\lambda \\ 3 + 4\lambda \end{bmatrix} = \begin{bmatrix} 4 + 5\mu \\ 1 + 2\mu \\ \mu \end{bmatrix} \]
Equating components:
From (iii): \[ \mu = 3 + 4\lambda \] Substitute into (i): \[ 1 + 2\lambda = 4 + 5(3 + 4\lambda) = 4 + 15 + 20\lambda = 19 + 20\lambda \Rightarrow 1 + 2\lambda = 19 + 20\lambda \Rightarrow -18 = 18\lambda \Rightarrow \lambda = -1 \]
Now, from (iii): \[ \mu = 3 + 4(-1) = 3 - 4 = -1 \]
Check in (ii): \[ 2 + 3(-1) = -1,\quad 1 + 2(-1) = -1 \Rightarrow \text{LHS = RHS ✅}
Substitute \( \lambda = -1 \) into Line 1:
\[ \vec{r} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + (-1) \cdot \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 - 2 \\ 2 - 3 \\ 3 - 4 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} \]
The lines intersect at the point: \[ \boxed{(-1,\ -1,\ -1)} \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]