Let \(x=tan^2θ.\)
Then \(\sqrt{x}=tanθ. =>θ=tan^{-1}\sqrt{x}.\)
so \(\frac {1-x}{1+x}\) = \(\frac{1-tan^2θ}{1+tan^2θ}\) =cos2θ.
Now we have,
RHS=\(\frac12 \cos^{-1}\frac{1-x}{1+x} = \frac12\cos^{-1}(\cos2\theta)= \frac12\times2\theta=\theta=\tan^{-1}\sqrt{x}\)=LHS.
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?