If the derivative $f'(x) < 0$ for all values in a domain, then the function is decreasing throughout that domain.
To analyze whether the function is increasing or decreasing, we calculate the derivative of $f(x)$. Given: \[ f(x) = \frac{2}{x} - 5 \] Differentiate $f(x)$ with respect to $x$: \[ f'(x) = \frac{d}{dx}\left(\frac{2}{x}\right) - \frac{d}{dx}(5) = -\frac{2}{x^2} - 0 = -\frac{2}{x^2} \] Now observe the sign of $f'(x)$: - For all $x \ne 0$, $x^2 > 0$ ⟹ $\frac{2}{x^2} > 0$ ⟹ $-\frac{2}{x^2} < 0$ So, $f'(x) < 0$ for all $x \ne 0$. This implies the function is decreasing for all $x \ne 0$.
\[ f(x) = \left\{ \begin{array}{ll} 1 - 2x & \text{if } x < -1 \\ \frac{1}{3}(7 + 2|x|) & \text{if } -1 \leq x \leq 2 \\ \frac{11}{18} (x-4)(x-5) & \text{if } x > 2 \end{array} \right. \]