If the derivative $f'(x) < 0$ for all values in a domain, then the function is decreasing throughout that domain.
To analyze whether the function is increasing or decreasing, we calculate the derivative of $f(x)$. Given: \[ f(x) = \frac{2}{x} - 5 \] Differentiate $f(x)$ with respect to $x$: \[ f'(x) = \frac{d}{dx}\left(\frac{2}{x}\right) - \frac{d}{dx}(5) = -\frac{2}{x^2} - 0 = -\frac{2}{x^2} \] Now observe the sign of $f'(x)$: - For all $x \ne 0$, $x^2 > 0$ ⟹ $\frac{2}{x^2} > 0$ ⟹ $-\frac{2}{x^2} < 0$ So, $f'(x) < 0$ for all $x \ne 0$. This implies the function is decreasing for all $x \ne 0$.
Let A be the set of 30 students of class XII in a school. Let f : A -> N, N is a set of natural numbers such that function f(x) = Roll Number of student x.
Give reasons to support your answer to (i).
Find the domain of the function \( f(x) = \cos^{-1}(x^2 - 4) \).
Time (Hours) | [A] (M) |
---|---|
0 | 0.40 |
1 | 0.20 |
2 | 0.10 |
3 | 0.05 |