>
questions
List of practice Questions
The equation of the circle whose end points of a diameter are the centres of the circles
\[ x^2 + y^2 + 2x - 4y + 1 = 0 \quad \text{and} \quad x^2 + y^2 - 8x + 6y + 17 = 0 \]
is
MHT CET - 2020
MHT CET
Mathematics
Coordinate Geometry
The area of the region bounded by the curve
\( y = 4x - x^2 \)
and the x-axis is
MHT CET - 2020
MHT CET
Mathematics
Integral Calculus
Evaluate the integral
\[ \int \frac{(1 + \log x)}{\cos^2(\log x)} \, dx \]
MHT CET - 2020
MHT CET
Mathematics
Integral Calculus
If
\[ f(x) = \left[ \tan \left( \frac{\pi}{4} + x \right) \right]^{\frac{1}{x}} \quad \text{if} \quad x \neq 0 \] \[ f(x) = k \quad \text{if} \quad x = 0 \]
is continuous at
\( x = 0 \), then \( k = \)
MHT CET - 2020
MHT CET
Mathematics
Limits
The equation of a line passing through the point
\( (2, 4, 6) \)
and parallel to the line
\[ 3x + 4 = 4y - 1 = 1 - 4z \]
is
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
If
\[ \tan u = \frac{\sqrt{1 - x}}{\sqrt{1 + x}}, \quad \cos v = 4x^3 - 3x, \quad \text{then} \quad \frac{du}{dv} = \text{?}
MHT CET - 2020
MHT CET
Mathematics
Differentiation
If
\[ \mathbf{a} = 2\hat{i} + 3\hat{j} - \hat{k}, \quad \mathbf{b} = -\hat{i} + 2\hat{j} - 4\hat{k}, \quad \mathbf{c} = \hat{i} + \hat{j} + \hat{k} \]
then
\( (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{c}) = \)
MHT CET - 2020
MHT CET
Mathematics
Vectors
If the vectors \( \hat{i} + 2\hat{j} + \hat{k} \) and \( \hat{i} + 6\hat{j} + 4\hat{k} \) are collinear, then the values of \( x \) and \( y \) are respectively
MHT CET - 2020
MHT CET
Mathematics
Vectors
The focal distance of the point \( (4, 4) \) on the parabola with vertex at \( (0, 0) \) and symmetric about the y-axis is
MHT CET - 2020
MHT CET
Mathematics
Conic sections
The equation of the plane passing through the points
\( (2, 3, 1), (4, -5, 3) \)
and parallel to the y-axis is
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
The maximum value of the function
\( \frac{\log x}{x}, x \neq 0 \)
is
MHT CET - 2020
MHT CET
Mathematics
Applications of Derivatives
If for the harmonic progression,
\( t_7 = \frac{1}{10}, \, t_{12} = \frac{1}{25}, \)
then
\( t_{20} = \)
MHT CET - 2020
MHT CET
Mathematics
sequences
If \( A \) and \( B \) are independent events such that odds in favour of \( A \) is 2:3 and odds against \( B \) is 4:5, then \( P(A \cap B) = \)
MHT CET - 2020
MHT CET
Mathematics
Probability
If
\[ \mathbf{a} = \hat{i} + \hat{j} + \hat{k}, \quad \mathbf{b} = \hat{i} - \hat{j} + 2\hat{k}, \quad \mathbf{c} = x\hat{i} + \hat{j} + (x - 1)\hat{k} \]
If the vector \( \mathbf{c} \) lies in the plane of \( \mathbf{a} \) and \( \mathbf{b} \), then \( x = \)
MHT CET - 2020
MHT CET
Mathematics
Vectors
The approximate value of
\( \cot^{-1} (1 \cdot 001) \)
is
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
If the line
\( 6x - y - 4 = 0 \)
touches the curve
\( y^2 = ax^3 + b \)
at the point
(1, 2),
then
\( a + b = \)
MHT CET - 2020
MHT CET
Mathematics
Applications of Derivatives
If
\[ \tan^{-1} x + \tan^{-1} y = c \text{ is the general solution of the differential equation} \]
MHT CET - 2020
MHT CET
Mathematics
Differential equations
With usual notations, if in \( \triangle ABC \), \( s \) is the semi-perimeter and \( (s - a)(s - b) = (s - c) \), then \( \triangle ABC \) is
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
Evaluate the integral
\[ \int x^3 e^{x^2} \, dx \]
MHT CET - 2020
MHT CET
Mathematics
Integral Calculus
Evaluate the integral
\[ \int_0^{\frac{\pi}{2}} \frac{\sqrt[3]{\sec x}}{\sqrt[3]{\sec x} + \sqrt[3]{\csc x}} \, dx \]
MHT CET - 2020
MHT CET
Mathematics
Integral Calculus
If
\[ \cos x + \cos y = -\cos \alpha, \quad \sin x + \sin y = -\sin \alpha, \quad \text{then} \quad \cot \left( \frac{x + y}{2} \right) = \]
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
The statement pattern
\( \sim (p \vee q) \vee (\sim p \wedge q) \)
is equivalent to
MHT CET - 2020
MHT CET
Mathematics
mathematical reasoning
The direction cosines of a line which makes equal acute angles with the co-ordinate axes are
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
The adjoint of the matrix
\[ A = \begin{pmatrix} 2 & 3
-3 & 5 \end{pmatrix} \]
is
MHT CET - 2020
MHT CET
Mathematics
Matrices
If
\[ y = \left( \frac{x^2 + 1}{x} \right)^x \text{ and } \frac{dy}{dx} = y \left[ g(x) + \log \left( \frac{x^2}{x+1} \right) \right], \text{ then } g(x) = \]
MHT CET - 2020
MHT CET
Mathematics
Differentiation
Prev
1
...
5569
5570
5571
5572
5573
...
8524
Next