Question:

Evaluate the integral \[ \int x^3 e^{x^2} \, dx \]

Show Hint

For integrals of the form \( x^3 e^{x^2} \), use substitution \( u = x^2 \) and integrate accordingly.
Updated On: Jan 30, 2026
  • \( \frac{1}{2} e^{x^2} (x^2 + 1) + c \)
  • \( \frac{1}{2} e^{x^2} (x^2 - 1) + c \)
  • \( \frac{1}{2} e^{x^2} (x^2 - 1) + c \)
  • \( \frac{1}{2} e^{x^2} (x^2 + 1) + c \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Use substitution.
Let \( u = x^2 \), so that \( du = 2x \, dx \). The integral becomes: \[ \int x^3 e^{x^2} \, dx = \frac{1}{2} \int e^u (u + 1) \, du \]
Step 2: Solve the integral.
Integrating, we get: \[ \frac{1}{2} e^{x^2} (x^2 - 1) + c \]
Step 3: Conclusion.
Thus, the solution to the integral is \( \frac{1}{2} e^{x^2} (x^2 - 1) + c \), corresponding to option (B).
Was this answer helpful?
0
0