Step 1: Use substitution.
Let \( u = x^2 \), so that \( du = 2x \, dx \). The integral becomes:
\[
\int x^3 e^{x^2} \, dx = \frac{1}{2} \int e^u (u + 1) \, du
\]
Step 2: Solve the integral.
Integrating, we get:
\[
\frac{1}{2} e^{x^2} (x^2 - 1) + c
\]
Step 3: Conclusion.
Thus, the solution to the integral is \( \frac{1}{2} e^{x^2} (x^2 - 1) + c \), corresponding to option (B).