Question:

The approximate value of \( \cot^{-1} (1 \cdot 001) \) is

Show Hint

For small angle approximations, \( \cot^{-1}(1 + x) \approx \frac{\pi}{4} - x \).
Updated On: Jan 30, 2026
  • \( \frac{\pi}{4} - 0 \cdot 0005 \)
  • \( \frac{\pi}{4} + 0 \cdot 005 \)
  • \( \frac{\pi}{4} - 0 \cdot 0005 \)
  • \( \frac{\pi}{4} - 0 \cdot 005 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Approximation using small angle.
Since \( 1 \cdot 001 \) is close to 1, we can use the approximation for small values of \( x \), where \( \cot^{-1} (1 + x) \approx \frac{\pi}{4} - x \). In this case, the value of \( x = 0 \cdot 0005 \).
Step 2: Conclusion.
Thus, the approximate value is \( \frac{\pi}{4} - 0 \cdot 0005 \), corresponding to option (A).
Was this answer helpful?
0
0