Let \( f(x, y) = \begin{cases} x^2 \sin \dfrac{1}{x} + y^2 \sin \dfrac{1}{y}, & xy \ne 0 \\ x^2 \sin \dfrac{1}{x}, & x \ne 0, y = 0 \\ \\ y^2 \sin \dfrac{1}{y}, & y \ne 0, x = 0 \\ 0, & x = y = 0 \end{cases} \).
Which of the following is true at \( (0, 0)? \)