Let \( X_1, X_2, \dots, X_n \ (n \ge 2) \) be a random sample from a distribution with probability density function
\[
f(x; \theta) =
\begin{cases}
\dfrac{1}{2\theta}, & -\theta \le x \le \theta, \\
0, & |x| > \theta,
\end{cases}
\]
where \( \theta \in (0, \infty) \) is unknown.
If \( R = \min\{X_1, X_2, \dots, X_n\} \) and \( S = \max\{X_1, X_2, \dots, X_n\} \),
then which of the following statements is/are TRUE?