Let $\{x_1, x_2, \ldots, x_n\$ be the realization of a randomly drawn sample of size $n$ with sample mean $\bar{x}$, and let $k$ be a real number other than $\bar{x}$. Let $S_1$ and $S_2$ be the sums of squared deviations defined as}
\[
S_1 = \sum_{i=1}^{n} (x_i - \bar{x})^2 \quad \text{and} \quad S_2 = \sum_{i=1}^{n} (x_i - k)^2
\]
Then,