Let \( X_1, X_2, \ldots, X_{50} \) be a random sample from a \( N(0, \sigma^2) \) distribution, where \( \sigma > 0 \). Define
\[ \bar{X}_e = \frac{1}{25} \sum_{i=1}^{25} X_{2i}, \] \[ \bar{X}_o = \frac{1}{25} \sum_{i=1}^{25} X_{2i-1}, \] \[ S_e = \sqrt{\frac{1}{24} \sum_{i=1}^{25} (X_{2i} - \bar{X}_e)^2}, \] and \[ S_o = \sqrt{\frac{1}{24} \sum_{i=1}^{25} (X_{2i-1} - \bar{X}_o)^2}. \]
Then which of the following statements is/are correct?