Step 1: Constructing the Coefficient Matrix
The given system of equations corresponds to the coefficient matrix:
\[
A =
\begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 5 \\
2 & 5 & a\\
\end{bmatrix}
\]
For the system to have a unique solution, the determinant of the matrix \( A \) must be non-zero, i.e., \( |A| \neq 0 \).
Step 2: Computing the Determinant
Expanding along the first row:
\[
|A| =
\begin{vmatrix}
1 & 2 & 3 \\
1 & 3 & 5 \\
2 & 5 & a\\
\end{vmatrix}
\]
\[
= 1
\begin{vmatrix}
3 & 5 \\
5 & a\\
\end{vmatrix}
- 2
\begin{vmatrix}
1 & 5 \\
2 & a\\
\end{vmatrix}
+ 3
\begin{vmatrix}
1 & 3 \\
\end{vmatrix}
\]
Calculating the minors:
\[
\begin{vmatrix}
3 & 5 \\
5 & a\\
\end{vmatrix} = (3a - 25)
\]
\[
\begin{vmatrix}
1 & 5 \\
2 & a\\
\end{vmatrix} = (a - 10)
\]
\[
\begin{vmatrix}
1 & 3 \\
2 & 5 \\
\end{vmatrix} = (5 - 6) = -1
\]
Substituting these:
\[
|A| = 1(3a - 25) - 2(a - 10) + 3(-1)
\]
\[
= 3a - 25 - 2a + 20 - 3 = a - 8
\]
Step 3: Condition for Unique Solution
For a unique solution:
\[
a - 8 \neq 0 \quad \Rightarrow \quad a \neq 8.
\]
Step 4: Determining \( b \)
Since the determinant only depends on \( a \), \( b \) can take any real value:
\[
b \in \mathbb{R}.
\]
Thus, the correct answer is:
\[
\boxed{a \neq 8, b \in \mathbb{R}}
\]