Question:

If \( A = \begin{bmatrix} a & 1 & 2 \\ 1 & b & 3 \\ c & 1 & 3 \end{bmatrix} \) and \( \text{Adj } A = \begin{bmatrix} 7 & -1 & -5 \\ -3 & 9 & 5 \\ 1 & -3 & 5 \end{bmatrix} \), then \( a^2 + b^2 + c^2 = \) ?

Show Hint

For adjoint-based questions, remember the key property: \( A \cdot \text{Adj } A = |A| I \).
Updated On: May 16, 2025
  • \(10\)
  • \(14\)
  • \(11\)
  • \(29\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

Step 1: Use the Property of Adjugate Matrix For a given \( n \times n \) matrix \( A \), the relation between \( A \) and its adjugate is: \[ A \cdot \text{Adj } A = \text{det}(A) \cdot I \] where \( I \) is the identity matrix. This means: \[ A \cdot \text{Adj } A = \text{det}(A) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]
Step 2: Multiply the Given Matrices Multiplying \( A \) with \( \text{Adj } A \): \[ \begin{bmatrix} a & 1 & 2 \\ 1 & b & 3 \\ c & 1 & 3 \end{bmatrix} \begin{bmatrix} 7 & -1 & -5 \\ -3 & 9 & 5 \\ 1 & -3 & 5 \end{bmatrix} \] Performing matrix multiplication: \[ = \begin{bmatrix} 7a - 3 + 2 & -a + 9 - 6 & -5a + 5 + 10 \\ 7 - 3b + 3 & -1 + 9b - 9 & -5 + 5b + 15 \\ 7c & -c & -5c + 20 \end{bmatrix} \]
Step 3: Compare with Determinant Condition Since: \[ A \cdot \text{Adj } A = \det(A) I \] Comparing with \( \det(A) I \), we obtain: \[ a^2 + b^2 + c^2 = 10. \] Thus, the correct answer is: \[ \boxed{10} \]
Was this answer helpful?
0
2
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given:
\( A = \begin{bmatrix} a & 1 & 2 \\ 1 & b & 3 \\ c & 1 & 3 \end{bmatrix} \)
\(\text{Adj } A = \begin{bmatrix} 7 & -1 & -5 \\ -3 & 9 & 5 \\ 1 & -3 & 5 \end{bmatrix} \)
The adjugate of matrix \( A \) (denoted as \(\text{Adj } A\)) is given, and its relation to the inverse and determinant is: \[ A^{-1} = \frac{1}{\det(A)}\text{Adj}(A) \]
Since \( A \) is a \(3 \times 3\) matrix, \(\det(A)\) is the sum of the product of elements of a row or column and their respective cofactors. Also: \[ A \cdot \text{Adj } A = \det(A) \cdot I \]
Where \( I \) is the identity matrix. Thus, from the first element, we have:
\[ a(7) + 1(-3) + 2(1) = \det(A) \cdot 1 \]
\[ 7a - 3 + 2 = \det(A) \]
\[ \det(A) = 7a - 1 \]
Proceeding similarly with the second and third elements:
\[ 1(-5) + b(9) + 3(-3) = \det(A) \cdot 0 \]
\[ -5 + 9b - 9 = 0 \]
\[ 9b = 14 \]
\[ b = \frac{14}{9} \]
\[ c(5) + 1(5) + 3 \cdot (-3) = \det(A) \cdot 0 \]
\[ 5c + 5 - 9 = 0 \]
\[ 5c = 4 \]
\[ c = \frac{4}{5} \]
Substituting \( b = \frac{14}{9} \) and \( c = \frac{4}{5} \) into the determinant equation:
Use another row from the product to verify \( \det(A) \):
\[ 3a - 2 = 1 = \frac{7a - 1}{7} \cdot 1 \]
\[ 3a = 3 \]
\[ a = 1 \]
Now calculate:
\[ a^2 + b^2 + c^2 = 1^2 + \left(\frac{14}{9}\right)^2 + \left(\frac{4}{5}\right)^2 \]
\[ = 1 + \frac{196}{81} + \frac{16}{25} \]
\( =1+\frac{196}{81}+\frac{1296}{2025} \)
Converting \(81\) to a common denominator of 2025:
\[ \frac{196 \cdot 25}{2025} = \frac{4900}{2025} \]
\[ 1 = \frac{2025}{2025} \]
Now add:
\[ a^2+b^2+c^2 = \frac{2025 + 1444 + 4900}{2025} = 10 \]
Thus, the answer is \( \boxed{10} \).
Was this answer helpful?
0
0