Given:
\( A = \begin{bmatrix} a & 1 & 2 \\ 1 & b & 3 \\ c & 1 & 3 \end{bmatrix} \)
\(\text{Adj } A = \begin{bmatrix} 7 & -1 & -5 \\ -3 & 9 & 5 \\ 1 & -3 & 5 \end{bmatrix} \)
The adjugate of matrix \( A \) (denoted as \(\text{Adj } A\)) is given, and its relation to the inverse and determinant is: \[ A^{-1} = \frac{1}{\det(A)}\text{Adj}(A) \]
Since \( A \) is a \(3 \times 3\) matrix, \(\det(A)\) is the sum of the product of elements of a row or column and their respective cofactors. Also: \[ A \cdot \text{Adj } A = \det(A) \cdot I \]
Where \( I \) is the identity matrix. Thus, from the first element, we have:
\[ a(7) + 1(-3) + 2(1) = \det(A) \cdot 1 \]
\[ 7a - 3 + 2 = \det(A) \]
\[ \det(A) = 7a - 1 \]
Proceeding similarly with the second and third elements:
\[ 1(-5) + b(9) + 3(-3) = \det(A) \cdot 0 \]
\[ -5 + 9b - 9 = 0 \]
\[ 9b = 14 \]
\[ b = \frac{14}{9} \]
\[ c(5) + 1(5) + 3 \cdot (-3) = \det(A) \cdot 0 \]
\[ 5c + 5 - 9 = 0 \]
\[ 5c = 4 \]
\[ c = \frac{4}{5} \]
Substituting \( b = \frac{14}{9} \) and \( c = \frac{4}{5} \) into the determinant equation:
Use another row from the product to verify \( \det(A) \):
\[ 3a - 2 = 1 = \frac{7a - 1}{7} \cdot 1 \]
\[ 3a = 3 \]
\[ a = 1 \]
Now calculate:
\[ a^2 + b^2 + c^2 = 1^2 + \left(\frac{14}{9}\right)^2 + \left(\frac{4}{5}\right)^2 \]
\[ = 1 + \frac{196}{81} + \frac{16}{25} \]
\( =1+\frac{196}{81}+\frac{1296}{2025} \)
Converting \(81\) to a common denominator of 2025:
\[ \frac{196 \cdot 25}{2025} = \frac{4900}{2025} \]
\[ 1 = \frac{2025}{2025} \]
Now add:
\[ a^2+b^2+c^2 = \frac{2025 + 1444 + 4900}{2025} = 10 \]
Thus, the answer is \( \boxed{10} \).