To determine the locus of the complex number \( Z \) that satisfies the condition \( \arg \left( \frac{Z - 1}{Z + 1} \right) = \frac{\pi}{4} \), we can start by breaking down this expression.
Let \( Z = x + yi \), where \( x \) and \( y \) are real numbers. Then, we can express:
\( \frac{Z - 1}{Z + 1} = \frac{x + yi - 1}{x + yi + 1} \).
Write \( \frac{Z - 1}{Z + 1} = u + vi \), where \( u \) and \( v \) are real.
The argument condition \( \arg \left( \frac{Z - 1}{Z + 1} \right) = \frac{\pi}{4} \) implies that:
\( \tan^{-1} \left(\frac{v}{u}\right) = \frac{\pi}{4} \), hence \( \frac{v}{u} = 1 \) or \( v = u \).
So, the imaginary part is equal to the real part for the complex number \( \frac{Z - 1}{Z + 1} \).
To simplify further, equate the imaginary and real parts:
| \(\text{Real: } \frac{(x-1)(x+1) + y^2}{(x+1)^2+y^2}\) | |
| \(\text{Imaginary: } \frac{y(x+1) - y}{(x+1)^2+y^2}\) |
This means:
\( (x-1)(x+1) + y^2 = y(x+1) - y \).
Solving this results in:
\( (x^2 - 1 + y^2) = y \).
This can be rewritten as:
\( x^2 + y^2 - y = 1 \).
To complete the square for \( y \), rewrite it as:
\( x^2 + (y - \frac{1}{2})^2 = \frac{5}{4} \).
This is the equation of a circle with center at \( \left( 0, \frac{1}{2} \right) \) and radius \( \frac{\sqrt{5}}{2} \).
Hence, the locus of \( Z \) is a circle.
If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is: