To determine the locus of the complex number \( Z \) that satisfies the condition \( \arg \left( \frac{Z - 1}{Z + 1} \right) = \frac{\pi}{4} \), we can start by breaking down this expression.
Let \( Z = x + yi \), where \( x \) and \( y \) are real numbers. Then, we can express:
\( \frac{Z - 1}{Z + 1} = \frac{x + yi - 1}{x + yi + 1} \).
Write \( \frac{Z - 1}{Z + 1} = u + vi \), where \( u \) and \( v \) are real.
The argument condition \( \arg \left( \frac{Z - 1}{Z + 1} \right) = \frac{\pi}{4} \) implies that:
\( \tan^{-1} \left(\frac{v}{u}\right) = \frac{\pi}{4} \), hence \( \frac{v}{u} = 1 \) or \( v = u \).
So, the imaginary part is equal to the real part for the complex number \( \frac{Z - 1}{Z + 1} \).
To simplify further, equate the imaginary and real parts:
\(\text{Real: } \frac{(x-1)(x+1) + y^2}{(x+1)^2+y^2}\) | |
\(\text{Imaginary: } \frac{y(x+1) - y}{(x+1)^2+y^2}\) |
This means:
\( (x-1)(x+1) + y^2 = y(x+1) - y \).
Solving this results in:
\( (x^2 - 1 + y^2) = y \).
This can be rewritten as:
\( x^2 + y^2 - y = 1 \).
To complete the square for \( y \), rewrite it as:
\( x^2 + (y - \frac{1}{2})^2 = \frac{5}{4} \).
This is the equation of a circle with center at \( \left( 0, \frac{1}{2} \right) \) and radius \( \frac{\sqrt{5}}{2} \).
Hence, the locus of \( Z \) is a circle.
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is:
If \( x^a y^b = e^m, \)
and
\[ x^c y^d = e^n, \]
and
\[ \Delta_1 = \begin{vmatrix} m & b \\ n & d \\ \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} a & m \\ c & n \\ \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} \]
Then the values of \( x \) and \( y \) respectively (where \( e \) is the base of the natural logarithm) are: