Step 1: Identifying the Pattern
The sequence consists of alternating even and odd terms:
\[
2, 3, 5, 6, 8, 9, \dots
\]
Grouping them:
- The even-indexed terms form: \( 2, 5, 8, \dots \)
- The odd-indexed terms form: \( 3, 6, 9, \dots \)
Step 2: Sum of Even-Indexed Terms
This sequence follows an arithmetic progression with:
\[
a = 2, \quad d = 3
\]
The sum of the first \( n \) terms of an AP is:
\[
S_n = \frac{n}{2} \times (2a + (n-1)d)
\]
Substituting values:
\[
S_{\text{even}} = \frac{n}{2} \times (2(2) + (n-1)(3)) = \frac{n}{2} \times (4 + 3n - 3) = \frac{n}{2} \times (3n + 1) = \frac{3n^2 + n}{2}
\]
Step 3: Sum of Odd-Indexed Terms
For the sequence \( 3, 6, 9, \dots \), with \( a = 3 \) and \( d = 3 \), using the same sum formula:
\[
S_{\text{odd}} = \frac{n}{2} \times (2(3) + (n-1)(3)) = \frac{n}{2} \times (6 + 3n - 3) = \frac{n}{2} \times (3n + 3) = \frac{3n^2 + 3n}{2}
\]
Step 4: Total Sum of the Sequence
Adding both:
\[
S = S_{\text{even}} + S_{\text{odd}} = \frac{3n^2 + n}{2} + \frac{3n^2 + 3n}{2}
\]
\[
S = \frac{6n^2 + 4n}{2} = 3n^2 + 2n
\]
Thus, the required sum is:
\[
\boxed{3n^2 + 2n}
\]