Step 1: Use the lens formula: \[ \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \Rightarrow \frac{1}{v} = \frac{1}{f} + \frac{1}{u} \] \[ f = 15\,cm, \quad u = -30\,cm \quad (\text{object on left}) \] \[ \frac{1}{v} = \frac{1}{15} - \frac{1}{30} = \frac{2 - 1}{30} = \frac{1}{30} \Rightarrow v = 30\,cm \] Step 2: Find magnification: \[ m = \frac{v}{u} = \frac{30}{-30} = -1 \Rightarrow h' = mh = -1 \cdot 6 = -6\,cm \] Negative sign implies real, inverted image.
Final Answer: \[ \boxed{\text{Image at } 30\,cm \text{ on opposite side, real, inverted, height } = 6\,cm} \]
Figure below shows a lens of refractive index, $ \mu = 1.4 $. $ C_1 $ and $ C_2 $ are the centres of curvature of the two faces of the lens of radii of curvature 4 cm and 8 cm respectively. The lens behaves as a
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.