Step 1: Use the lens formula: \[ \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \Rightarrow \frac{1}{v} = \frac{1}{f} + \frac{1}{u} \] \[ f = 15\,cm, \quad u = -30\,cm \quad (\text{object on left}) \] \[ \frac{1}{v} = \frac{1}{15} - \frac{1}{30} = \frac{2 - 1}{30} = \frac{1}{30} \Rightarrow v = 30\,cm \] Step 2: Find magnification: \[ m = \frac{v}{u} = \frac{30}{-30} = -1 \Rightarrow h' = mh = -1 \cdot 6 = -6\,cm \] Negative sign implies real, inverted image.
Final Answer: \[ \boxed{\text{Image at } 30\,cm \text{ on opposite side, real, inverted, height } = 6\,cm} \]
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]