The orbital angular momentum of an electron in an atom is given by the formula: \[ L = \sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{l(l+1)} \hbar \] where \( l \) is the azimuthal quantum number (also known as the orbital angular momentum quantum number), and \( h \) is Planck's constant, with \( \hbar = \frac{h}{2\pi} \) being the reduced Planck constant.
For a '2s' orbital, the principal quantum number \( n = 2 \), and for an 's' orbital, the azimuthal quantum number \( l = 0 \). Substituting \( l = 0 \) into the formula for orbital angular momentum: \[ L_{2s} = \sqrt{0(0+1)} \frac{h}{2\pi} = \sqrt{0} \frac{h}{2\pi} = 0 \] So, the orbital angular momentum for an electron in a 2s orbital is 0. For a '2p' orbital, the principal quantum number \( n = 2 \), and for a 'p' orbital, the azimuthal quantum number \( l = 1 \). Substituting \( l = 1 \) into the formula for orbital angular momentum: \[ L_{2p} = \sqrt{1(1+1)} \frac{h}{2\pi} = \sqrt{1(2)} \frac{h}{2\pi} = \sqrt{2} \frac{h}{2\pi} \] So, the orbital angular momentum for an electron in a 2p orbital is \( \sqrt{2} \frac{h}{2\pi} \). The orbital angular momentum values for electrons in '2s' and '2p' orbitals are 0 and \( \sqrt{2} \frac{h}{2\pi} \) respectively.
This corresponds to option (4).
Match the following:
Which of the following is the correct electronic configuration for \( \text{Oxygen (O)} \)?
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).