The orbital angular momentum of an electron in an atom is given by the formula: \[ L = \sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{l(l+1)} \hbar \] where \( l \) is the azimuthal quantum number (also known as the orbital angular momentum quantum number), and \( h \) is Planck's constant, with \( \hbar = \frac{h}{2\pi} \) being the reduced Planck constant.
For a '2s' orbital, the principal quantum number \( n = 2 \), and for an 's' orbital, the azimuthal quantum number \( l = 0 \). Substituting \( l = 0 \) into the formula for orbital angular momentum: \[ L_{2s} = \sqrt{0(0+1)} \frac{h}{2\pi} = \sqrt{0} \frac{h}{2\pi} = 0 \] So, the orbital angular momentum for an electron in a 2s orbital is 0. For a '2p' orbital, the principal quantum number \( n = 2 \), and for a 'p' orbital, the azimuthal quantum number \( l = 1 \). Substituting \( l = 1 \) into the formula for orbital angular momentum: \[ L_{2p} = \sqrt{1(1+1)} \frac{h}{2\pi} = \sqrt{1(2)} \frac{h}{2\pi} = \sqrt{2} \frac{h}{2\pi} \] So, the orbital angular momentum for an electron in a 2p orbital is \( \sqrt{2} \frac{h}{2\pi} \). The orbital angular momentum values for electrons in '2s' and '2p' orbitals are 0 and \( \sqrt{2} \frac{h}{2\pi} \) respectively.
This corresponds to option (4).
Match List-I with List-II: List-I
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)