The orbital angular momentum of an electron in an atom is given by the formula: \[ L = \sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{l(l+1)} \hbar \] where \( l \) is the azimuthal quantum number (also known as the orbital angular momentum quantum number), and \( h \) is Planck's constant, with \( \hbar = \frac{h}{2\pi} \) being the reduced Planck constant.
For a '2s' orbital, the principal quantum number \( n = 2 \), and for an 's' orbital, the azimuthal quantum number \( l = 0 \). Substituting \( l = 0 \) into the formula for orbital angular momentum: \[ L_{2s} = \sqrt{0(0+1)} \frac{h}{2\pi} = \sqrt{0} \frac{h}{2\pi} = 0 \] So, the orbital angular momentum for an electron in a 2s orbital is 0. For a '2p' orbital, the principal quantum number \( n = 2 \), and for a 'p' orbital, the azimuthal quantum number \( l = 1 \). Substituting \( l = 1 \) into the formula for orbital angular momentum: \[ L_{2p} = \sqrt{1(1+1)} \frac{h}{2\pi} = \sqrt{1(2)} \frac{h}{2\pi} = \sqrt{2} \frac{h}{2\pi} \] So, the orbital angular momentum for an electron in a 2p orbital is \( \sqrt{2} \frac{h}{2\pi} \). The orbital angular momentum values for electrons in '2s' and '2p' orbitals are 0 and \( \sqrt{2} \frac{h}{2\pi} \) respectively.
This corresponds to option (4).
Match the following:
Which of the following is the correct electronic configuration for \( \text{Oxygen (O)} \)?
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: