The orbital angular momentum of an electron in an atom is given by the formula: \[ L = \sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{l(l+1)} \hbar \] where \( l \) is the azimuthal quantum number (also known as the orbital angular momentum quantum number), and \( h \) is Planck's constant, with \( \hbar = \frac{h}{2\pi} \) being the reduced Planck constant.
For a '2s' orbital, the principal quantum number \( n = 2 \), and for an 's' orbital, the azimuthal quantum number \( l = 0 \). Substituting \( l = 0 \) into the formula for orbital angular momentum: \[ L_{2s} = \sqrt{0(0+1)} \frac{h}{2\pi} = \sqrt{0} \frac{h}{2\pi} = 0 \] So, the orbital angular momentum for an electron in a 2s orbital is 0. For a '2p' orbital, the principal quantum number \( n = 2 \), and for a 'p' orbital, the azimuthal quantum number \( l = 1 \). Substituting \( l = 1 \) into the formula for orbital angular momentum: \[ L_{2p} = \sqrt{1(1+1)} \frac{h}{2\pi} = \sqrt{1(2)} \frac{h}{2\pi} = \sqrt{2} \frac{h}{2\pi} \] So, the orbital angular momentum for an electron in a 2p orbital is \( \sqrt{2} \frac{h}{2\pi} \). The orbital angular momentum values for electrons in '2s' and '2p' orbitals are 0 and \( \sqrt{2} \frac{h}{2\pi} \) respectively.
This corresponds to option (4).
The orbital angular momentum of an electron in an atomic orbital is given by the formula:
\(L = \sqrt{l(l+1)} \frac{h}{2\pi}\)
where:
The azimuthal quantum number \(l\) determines the subshell of the electron:
Now, calculate the orbital angular momentum for:
Since \(l = 0\)
\(L = \sqrt{0(0+1)} \frac{h}{2\pi} = 0\)
Since \(l = 1\)
\(L = \sqrt{1(1+1)} \frac{h}{2\pi} = \sqrt{2} \frac{h}{2\pi}\)
Therefore, for electrons in 2s and 2p orbitals, the orbital angular momentum values are 0 and \(\sqrt{2} \frac{h}{2\pi}\) respectively.
So, the correct answer is: 0 and \(\sqrt{2} \frac{h}{2\pi}\).
The figures below show:
Which of the following points in Figure 2 most accurately represents the nodal surface shown in Figure 1?
But-2-yne and hydrogen (one mole each) are separately treated with (i) Pd/C and (ii) Na/liq.NH₃ to give the products X and Y respectively.
Identify the incorrect statements.
A. X and Y are stereoisomers.
B. Dipole moment of X is zero.
C. Boiling point of X is higher than Y.
D. X and Y react with O₃/Zn + H₂O to give different products.
Choose the correct answer from the options given below :

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
