The orbital angular momentum of an electron in an atom is given by the formula: \[ L = \sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{l(l+1)} \hbar \] where \( l \) is the azimuthal quantum number (also known as the orbital angular momentum quantum number), and \( h \) is Planck's constant, with \( \hbar = \frac{h}{2\pi} \) being the reduced Planck constant.
For a '2s' orbital, the principal quantum number \( n = 2 \), and for an 's' orbital, the azimuthal quantum number \( l = 0 \). Substituting \( l = 0 \) into the formula for orbital angular momentum: \[ L_{2s} = \sqrt{0(0+1)} \frac{h}{2\pi} = \sqrt{0} \frac{h}{2\pi} = 0 \] So, the orbital angular momentum for an electron in a 2s orbital is 0. For a '2p' orbital, the principal quantum number \( n = 2 \), and for a 'p' orbital, the azimuthal quantum number \( l = 1 \). Substituting \( l = 1 \) into the formula for orbital angular momentum: \[ L_{2p} = \sqrt{1(1+1)} \frac{h}{2\pi} = \sqrt{1(2)} \frac{h}{2\pi} = \sqrt{2} \frac{h}{2\pi} \] So, the orbital angular momentum for an electron in a 2p orbital is \( \sqrt{2} \frac{h}{2\pi} \). The orbital angular momentum values for electrons in '2s' and '2p' orbitals are 0 and \( \sqrt{2} \frac{h}{2\pi} \) respectively.
This corresponds to option (4).
The orbital angular momentum of an electron in an atomic orbital is given by the formula:
\(L = \sqrt{l(l+1)} \frac{h}{2\pi}\)
where:
The azimuthal quantum number \(l\) determines the subshell of the electron:
Now, calculate the orbital angular momentum for:
Since \(l = 0\)
\(L = \sqrt{0(0+1)} \frac{h}{2\pi} = 0\)
Since \(l = 1\)
\(L = \sqrt{1(1+1)} \frac{h}{2\pi} = \sqrt{2} \frac{h}{2\pi}\)
Therefore, for electrons in 2s and 2p orbitals, the orbital angular momentum values are 0 and \(\sqrt{2} \frac{h}{2\pi}\) respectively.
So, the correct answer is: 0 and \(\sqrt{2} \frac{h}{2\pi}\).
Which of the following is the correct electronic configuration for \( \text{Oxygen (O)} \)?
Which of the following is/are correct with respect to the energy of atomic orbitals of a hydrogen atom?
(A) \( 1s<2s<2p<3d<4s \)
(B) \( 1s<2s = 2p<3s = 3p \)
(C) \( 1s<2s<2p<3s<3p \)
(D) \( 1s<2s<4s<3d \)
Choose the correct answer from the options given below:

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
