Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]
Given: \[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \] Using the sum rule: \[ \frac{dy}{dx} = \frac{d}{dx}[\cos(x^2)] + \frac{d}{dx}[\cos(2x)] + \frac{d}{dx}[\cos^2(x^2)] + \frac{d}{dx}[\cos(x^x)] \]
Using chain rule: \[ \frac{d}{dx}[\cos(x^2)] = -\sin(x^2) \cdot \frac{d}{dx}(x^2) = -\sin(x^2) \cdot 2x \]
Again chain rule: \[ \frac{d}{dx}[\cos(2x)] = -\sin(2x) \cdot 2 \]
Let \(u = \cos(x^2)\), then the term is \(u^2\): \[ \frac{d}{dx}[\cos^2(x^2)] = 2\cos(x^2) \cdot \frac{d}{dx}[\cos(x^2)] \] We already know: \[ \frac{d}{dx}[\cos(x^2)] = -\sin(x^2) \cdot 2x \] So: \[ \frac{d}{dx}[\cos^2(x^2)] = 2\cos(x^2) \cdot [-\sin(x^2) \cdot 2x] = -4x\cos(x^2)\sin(x^2) \]
Let \(v = x^x\). We know: \[ \frac{d}{dx}(x^x) = x^x \left( \ln x + 1 \right) \] Now apply chain rule: \[ \frac{d}{dx}[\cos(x^x)] = -\sin(x^x) \cdot \frac{d}{dx}(x^x) = -\sin(x^x) \cdot x^x(\ln x + 1) \]
\[ \frac{dy}{dx} = -2x\sin(x^2) - 2\sin(2x) - 4x\cos(x^2)\sin(x^2) - x^x(\ln x + 1)\sin(x^x) \]
Final Answer:
\[ \boxed{\frac{dy}{dx} = -2x\sin(x^2) - 2\sin(2x) - 4x\cos(x^2)\sin(x^2) - x^x(\ln x + 1)\sin(x^x)} \]
Using chain rule:
\[ \frac{d}{dx}[\cos(x^2)] = -\sin(x^2) \cdot \frac{d}{dx}(x^2) = -2x \sin(x^2) \]
\( \cos^2(x) = (\cos x)^2 \), use chain rule:
\[ \frac{d}{dx}[\cos^2(x)] = 2\cos(x) \cdot (-\sin(x)) = -2\cos(x)\sin(x) \]
Let \( u = x^2 \), then:
\[ \frac{d}{dx}[\cos^2(x^2)] = 2\cos(x^2)(-\sin(x^2)) \cdot \frac{d}{dx}(x^2) = -4x \cos(x^2)\sin(x^2) \]
Let \( u = x^x \). Then:
\[ \frac{d}{dx}[x^x] = \frac{d}{dx}[e^{x\ln x}] = e^{x\ln x} \cdot \frac{d}{dx}(x\ln x) = x^x(\ln x + 1) \] \[ \frac{d}{dx}[\cos(x^x)] = -\sin(x^x) \cdot \frac{d}{dx}(x^x) = -x^x(\ln x + 1)\sin(x^x) \]
\[ \frac{dy}{dx} = -2x \sin(x^2) - 2 \cos(x) \sin(x) - 4x \cos(x^2) \sin(x^2) - x^x (\ln x + 1) \sin(x^x) \]
Find the intervals in which the function\[ f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11 \]
is:
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(i)} Express the distance \( y \) between the wall and foot of the ladder in terms of \( h \) and height \( x \) on the wall at a certain instant. Also, write an expression in terms of \( h \) and \( x \) for the area \( A \) of the right triangle, as seen from the side by an observer.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.