For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
Given: \[ \sqrt{x} + \sqrt{y} = 1 \] Rewriting in exponential form: \[ x^{1/2} + y^{1/2} = 1 \] Differentiating both sides with respect to \( x \): \[ \frac{d}{dx}\left(x^{1/2}\right) + \frac{d}{dx}\left(y^{1/2}\right) = \frac{d}{dx}(1) \] \[ \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx} = 0 \] Solving for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = - \frac{\frac{1}{2\sqrt{x}}}{\frac{1}{2\sqrt{y}}} = - \frac{\sqrt{y}}{\sqrt{x}} \] Substituting the given point \( \left(\frac{1}{9}, \frac{1}{9}\right) \): \[ \sqrt{x} = \sqrt{\frac{1}{9}} = \frac{1}{3}, \quad \sqrt{y} = \sqrt{\frac{1}{9}} = \frac{1}{3} \] \[ \frac{dy}{dx} = - \frac{1/3}{1/3} = \boxed{-1} \]
Let \( y = f(x) \) be the solution of the differential equation\[\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^6 + 4x}{\sqrt{1 - x^2}}, \quad -1 < x < 1\] such that \( f(0) = 0 \). If \[6 \int_{-1/2}^{1/2} f(x)dx = 2\pi - \alpha\] then \( \alpha^2 \) is equal to ______.
Let \( y = y(x) \) be the solution of the differential equation \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] such that \( y(0) = \frac{5}{4} \). Then \[ 12 \left( y\left( \frac{\pi}{4} \right) - e^{-2} \right) \] is equal to _____.
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]