To find the percentages of hydrogen and oxygen in the given organic compound, we follow these steps:
Thus, the percentages of hydrogen and oxygen in the organic compound are 6.72% and 53.41% respectively, which matches the correct option:
6.72, 53.41
Step 1: Calculate mass of hydrogen in \( \text{H}_2\text{O} \) \[ \text{Mass of H} = \frac{2}{18} \times 0.127\, \text{g} = 0.0141\, \text{g} \] \[ % \text{H} = \left( \frac{0.0141}{0.210} \right) \times 100 = 6.72% \]
Step 2: Calculate mass of carbon in \( \text{CO}_2 \) \[ \text{Mass of C} = \frac{12}{44} \times 0.307\, \text{g} = 0.0837\, \text{g} \] \[ % \text{C} = \left( \frac{0.0837}{0.210} \right) \times 100 = 39.87% \]
Step 3: Calculate percentage of oxygen \[ \% \text{O} = 100 - (\% \text{C} + \% \text{H}) = 100 - (39.87 + 6.72) = 53.41\% \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider the following reaction sequence: 
Given: Compound (x) has percentage composition \(76.6%\ \text{C}\), \(6.38%\ \text{H}\) and vapour density \(=47\). Compound (y) develops a characteristic colour with neutral \(\mathrm{FeCl_3}\) solution. Identify the {INCORRECT statement.}
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.