Step 1: Calculate mass of hydrogen in \( \text{H}_2\text{O} \) \[ \text{Mass of H} = \frac{2}{18} \times 0.127\, \text{g} = 0.0141\, \text{g} \] \[ % \text{H} = \left( \frac{0.0141}{0.210} \right) \times 100 = 6.72% \]
Step 2: Calculate mass of carbon in \( \text{CO}_2 \) \[ \text{Mass of C} = \frac{12}{44} \times 0.307\, \text{g} = 0.0837\, \text{g} \] \[ % \text{C} = \left( \frac{0.0837}{0.210} \right) \times 100 = 39.87% \]
Step 3: Calculate percentage of oxygen \[ \% \text{O} = 100 - (\% \text{C} + \% \text{H}) = 100 - (39.87 + 6.72) = 53.41\% \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: