For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).

The decomposition reaction is: \[ 2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g) \]
1. Reaction Order Analysis:
The rate constant \(k = 4.606 \times 10^{-2} s^{-1}\) suggests a first-order reaction. For first-order kinetics: \[ ln \frac{P_0}{P_t} = kt \] where \(P_0\) is initial \(N_2O_5\) pressure and \(P_t\) is pressure at time t.
2. Initial Conditions:
At t=0, total pressure = 0.6 atm (pure \(N_2O_5\)), so \(P_0 = 0.6\) atm.
3. Pressure Calculation After 100s:
\[ ln \frac{0.6}{P_t} = (4.606 \times 10^{-2}) \times 100 = 4.606 \] \[ \frac{0.6}{P_t} = e^{4.606} \approx 100 \] \[ P_t = \frac{0.6}{100} = 0.006 \text{ atm} \]
4. Stoichiometric Analysis:
Let \(x\) be the decrease in \(N_2O_5\) pressure. From stoichiometry: \[ 2x = P_0 - P_t = 0.6 - 0.006 = 0.594 \text{ atm} \] \[ x = \frac{0.594}{2} = 0.297 \text{ atm} \]
5. Partial Pressures at 100s:
- \(N_2O_4\) pressure: \(0.594\) atm (2x) - \(O_2\) pressure: \(0.297\) atm (x) - Remaining \(N_2O_5\): \(0.006\) atm
6. Total Pressure Calculation:
\[ P_{total} = 0.006 + 0.594 + 0.297 = 0.897 \approx 0.9 \text{ atm} \]
Final Answer:
The total pressure after 100 seconds is $0.9$ atm.
Given:
Let the pressure of O2 formed at time \( t \) be \( p \).
Then the decrease in pressure of \( \text{N}_2\text{O}_5 \) is \( 2p \), and the increase in pressure of \( \text{N}_2\text{O}_4 \) is also \( 2p \).
Total pressure at time \( t \) is:
\[ P(t) = (0.6 - 2p) + 2p + p = 0.6 + p \]
Using first-order kinetics:
\[ k = \frac{1}{t} \ln\left(\frac{[N_2O_5]_0}{[N_2O_5]_t}\right) = \frac{1}{t} \ln\left(\frac{0.6}{0.6 - 2p}\right) \]
Substituting values:
\[ 4.606 \times 10^{-2} = \frac{1}{100} \ln\left(\frac{0.6}{0.6 - 2p}\right) \Rightarrow \ln\left(\frac{0.6}{0.6 - 2p}\right) = 4.606 \]
\[ \frac{0.6}{0.6 - 2p} = e^{4.606} \approx 100 \Rightarrow 0.6 - 2p = \frac{0.6}{100} = 0.006 \Rightarrow 2p = 0.594 \Rightarrow p = 0.297 \]
Total pressure at time \( t = 100 \, \text{s} \):
\[ x = 0.6 + p = 0.6 + 0.297 = 0.897 \, \text{atm} \Rightarrow x = 897 \times 10^{-3} \, \text{atm} \]
Final Answer: \( \boxed{897} \)
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to: