The optical path difference introduced by the glass plate is:
\[ \Delta x = t(\mu - 1), \]
where $t$ is the thickness of the plate and $\mu$ is its refractive index.
The fringe shift is given by:
\[ \Delta x = n\lambda, \]
where $n = 4$ (the shift corresponds to the 4th fringe) and $\lambda = 500 \, \mathrm{nm}$.
Equating: \[ t(\mu - 1) = n\lambda. \]
Substituting $\mu = 1.5$, $n = 4$, and $\lambda = 500 \, \mathrm{nm}$:
\[ t(1.5 - 1) = 4 \cdot 500. \]
Simplify: \[ t = \frac{2000}{0.5} = 4000 \, \mathrm{nm} = 4 \, \mu \mathrm{m}. \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: