The angular position of the first minima in single slit diffraction is given by:
\[ a \sin \theta = m\lambda, \quad \text{for } m = \pm 1 \]
For small angles, \( \sin \theta \approx \tan \theta = \frac{y}{D} \), so the equation becomes:
\[ y = \frac{\lambda D}{a} \]
Substituting the values \( \lambda = 650 \times 10^{-9} \, \text{m} \), \( D = 0.6 \, \text{m} \), and \( a = 0.6 \times 10^{-3} \, \text{m} \) into the equation:
\[ y = \frac{650 \times 10^{-9} \times 0.6}{0.6 \times 10^{-3}} = \frac{390 \times 10^{-9}}{0.6 \times 10^{-3}} = 0.00065 \, \text{m} = 0.65 \, \text{mm} \]
The total distance between the first minima on both sides of the central maximum is twice the value of \( y \):
\[ 2y = 2 \times 0.65 \, \text{mm} = 1.3 \, \text{mm} \]

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?