Calculate the angle of minimum deviation of an equilateral prism. The refractive index of the prism is \(\sqrt{3}\). Calculate the angle of incidence for this case of minimum deviation also.
The refractive index for minimum deviation \( \mu \) is given by the following formula:
\[ \mu = \frac{\sin \left( \frac{A + D_m}{2} \right)}{\sin \left( \frac{A}{2} \right)} \]
Substitute the given values (\( A = 60^\circ \) and \( \mu = \sqrt{3} \)):
\[ \sqrt{3} = \frac{\sin \left( \frac{60^\circ + D_m}{2} \right)}{\sin 30^\circ} \]
Since \( \sin 30^\circ = 0.5 \), the equation becomes:
\[ \sqrt{3} = \frac{\sin \left( \frac{60^\circ + D_m}{2} \right)}{0.5} \]
Multiplying both sides by \( 0.5 \):
\[ \sin \left( \frac{60^\circ + D_m}{2} \right) = \frac{\sqrt{3}}{2} \]
From trigonometry, we know that \( \sin 60^\circ = \frac{\sqrt{3}}{2} \). So, we have:
\[ \frac{60^\circ + D_m}{2} = 60^\circ \]
Therefore:
\[ 60^\circ + D_m = 120^\circ \quad \Rightarrow \quad D_m = 60^\circ \]
The angle of incidence at minimum deviation \( i \) is given by the formula:
\[ i = \frac{A + D_m}{2} \]
Substituting \( A = 60^\circ \) and \( D_m = 60^\circ \), we get:
\[ i = \frac{60^\circ + 60^\circ}{2} = 60^\circ \]
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(i)} Express the distance \( y \) between the wall and foot of the ladder in terms of \( h \) and height \( x \) on the wall at a certain instant. Also, write an expression in terms of \( h \) and \( x \) for the area \( A \) of the right triangle, as seen from the side by an observer.
निम्नलिखित गद्यांश की सप्रसंग व्याख्या कीजिए :
‘‘पुर्ज़े खोलकर फिर ठीक करना उतना कठिन काम नहीं है, लोग सीखते भी हैं, सिखाते भी हैं, अनाड़ी के हाथ में चाहे घड़ी मत दो पर जो घड़ीसाज़ी का इम्तहान पास कर आया है उसे तो देखने दो । साथ ही यह भी समझा दो कि आपको स्वयं घड़ी देखना, साफ़ करना और सुधारना आता है कि नहीं । हमें तो धोखा होता है कि परदादा की घड़ी जेब में डाले फिरते हो, वह बंद हो गई है, तुम्हें न चाबी देना आता है न पुर्ज़े सुधारना तो भी दूसरों को हाथ नहीं लगाने देते इत्यादि ।’’