For photoelectric emission, the energy of the photon must be equal to or greater than the work function \( W_e \):
\[ \lambda = \frac{hc}{W_e} \]
Using \( h = 1240 \, \text{nm} \times \text{eV} \) and \( W_e = 3.0 \, \text{eV} \):
\[ \lambda \leq \frac{1240 \, \text{nm} \times \text{eV}}{3.0 \, \text{eV}} = 413.33 \, \text{nm} \]
Thus, \( \lambda_{\text{max}} \approx 414 \, \text{nm} \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
The main properties of waves are as follows –