For photoelectric emission, the energy of the photon must be equal to or greater than the work function \( W_e \):
\[ \lambda = \frac{hc}{W_e} \]
Using \( h = 1240 \, \text{nm} \times \text{eV} \) and \( W_e = 3.0 \, \text{eV} \):
\[ \lambda \leq \frac{1240 \, \text{nm} \times \text{eV}}{3.0 \, \text{eV}} = 413.33 \, \text{nm} \]
Thus, \( \lambda_{\text{max}} \approx 414 \, \text{nm} \).
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
The main properties of waves are as follows –