The wave equation is given by:
\[
y = 2 \sin \left( 2\pi (3t - x) + \frac{\pi}{4} \right)
\]
To find the acceleration, we first need to differentiate \( y \) twice with respect to time.
The velocity is given by:
\[
v = \frac{\partial y}{\partial t} = 2 \cdot 2\pi \cdot 3 \cos \left( 2\pi (3t - x) + \frac{\pi}{4} \right)
\]
\[
v = 12\pi \cos \left( 2\pi (3t - x) + \frac{\pi}{4} \right)
\]
The acceleration is:
\[
a = \frac{\partial^2 y}{\partial t^2} = -12\pi^2 \cdot 3 \sin \left( 2\pi (3t - x) + \frac{\pi}{4} \right)
\]
\[
a = -36\pi^2 \sin \left( 2\pi (3t - x) + \frac{\pi}{4} \right)
\]
Substitute \( t = 1 \) and \( x = 4 \):
\[
a = -36\pi^2 \sin \left( 2\pi \left( 3 \cdot 1 - 4 \right) + \frac{\pi}{4} \right)
\]
\[
a = -36\pi^2 \sin \left( 2\pi \cdot (-1) + \frac{\pi}{4} \right)
\]
\[
a = -36\pi^2 \sin \left( -2\pi + \frac{\pi}{4} \right)
\]
\[
a = -36\pi^2 \sin \left( -\frac{7\pi}{4} \right)
\]
\[
a = -36\pi^2 \cdot (-\frac{\sqrt{2}}{2}) = -36 \, \text{cm}^2/\text{s}^2
\]
Thus, the acceleration is \( -36 \, \text{cm}^2/\text{s}^2 \).