We can use the equation that relates the speed of light (\( c \)), frequency (\( f \)), and wavelength (\( \lambda \)):
\[
c = f \lambda
\]
Where:
- \( c = 3 \times 10^8 \, \text{m/s} \) is the speed of light,
- \( f \) is the frequency we need to calculate,
- \( \lambda = 7.8 \times 10^{-2} \, \text{nm} = 7.8 \times 10^{-10} \, \text{m} \).
Rearranging the equation to solve for \( f \):
\[
f = \frac{c}{\lambda}
\]
Substituting the values:
\[
f = \frac{3 \times 10^8}{7.8 \times 10^{-10}} = 3.8 \times 10^{14} \, \text{s}^{-1}
\]
Thus, the correct answer is \( \boxed{3.8 \times 10^{14} \, \text{s}^{-1}} \).