| List-I (Complex ion) | List-II (Spin only magnetic moment in B.M.) |
|---|---|
| (A) [Cr(NH$_3$)$_6$]$^{3+}$ | (I) 4.90 |
| (B) [NiCl$_4$]$^{2-}$ | (II) 3.87 |
| (C) [CoF$_6$]$^{3-}$ | (III) 0.0 |
| (D) [Ni(CN)$_4$]$^{2-}$ | (IV) 2.83 |
To match the complex ions in List-I with their respective spin-only magnetic moments in List-II, we need to understand the concept of spin-only magnetic moment, which is given by the formula:
\(\mu = \sqrt{n(n+2)}\) Bohr Magneton (B.M.),
where \(n\) is the number of unpaired electrons in the complex ion.
Thus, the correct match between List-I and List-II is:
The spin-only magnetic moment ($\mu$) in Bohr Magnetons (B.M.) is calculated using the formula: \[ \mu = \sqrt{n(n+2)} \, \text{B.M.}, \] where $n$ is the number of unpaired electrons.
(A) [Cr(NH$_3$)$_6$]$^{3+}$: \[ \text{Cr}^{3+}: 3d^3 \, (3 \, \text{unpaired electrons}). \]
\[ \mu = \sqrt{3(3+2)} = 3.87 \, \text{B.M.} \, (\text{II}). \]
(B) [NiCl$_4$]$^{2-}$: \[ \text{Ni}^{2+}: 3d^8 \, (2 \, \text{unpaired electrons}). \]
\[ \mu = \sqrt{2(2+2)} = 2.83 \, \text{B.M.} \, (\text{IV}). \]
(C) [CoF$_6$]$^{3-}$: \[ \text{Co}^{3+}: 3d^6 \, (4 \, \text{unpaired electrons}). \]
\[ \mu = \sqrt{4(4+2)} = 4.90 \, \text{B.M.} \, (\text{I}). \]
(D) [Ni(CN)$_4$]$^{2-}$: \[ \text{Ni}^{2+}: 3d^8 \, (\text{low spin, 0 unpaired electrons}). \]
\[ \mu = \sqrt{0(0+2)} = 0.0 \, \text{B.M.} \, (\text{III}). \]
The correct matching is: \[ \text{(A)-(II), (B)-(IV), (C)-(I), (D)-(III)}. \]
Match List - I with List - II:
List - I:
(A) \([ \text{MnBr}_4]^{2-}\)
(B) \([ \text{FeF}_6]^{3-}\)
(C) \([ \text{Co(C}_2\text{O}_4)_3]^{3-}\)
(D) \([ \text{Ni(CO)}_4]\)
List - II:
(I) d²sp³ diamagnetic
(II) sp²d² paramagnetic
(III) sp³ diamagnetic
(IV) sp³ paramagnetic
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).

In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by: