| List-I (Complex ion) | List-II (Spin only magnetic moment in B.M.) |
|---|---|
| (A) [Cr(NH$_3$)$_6$]$^{3+}$ | (I) 4.90 |
| (B) [NiCl$_4$]$^{2-}$ | (II) 3.87 |
| (C) [CoF$_6$]$^{3-}$ | (III) 0.0 |
| (D) [Ni(CN)$_4$]$^{2-}$ | (IV) 2.83 |
The spin-only magnetic moment ($\mu$) in Bohr Magnetons (B.M.) is calculated using the formula: \[ \mu = \sqrt{n(n+2)} \, \text{B.M.}, \] where $n$ is the number of unpaired electrons.
(A) [Cr(NH$_3$)$_6$]$^{3+}$: \[ \text{Cr}^{3+}: 3d^3 \, (3 \, \text{unpaired electrons}). \]
\[ \mu = \sqrt{3(3+2)} = 3.87 \, \text{B.M.} \, (\text{II}). \]
(B) [NiCl$_4$]$^{2-}$: \[ \text{Ni}^{2+}: 3d^8 \, (2 \, \text{unpaired electrons}). \]
\[ \mu = \sqrt{2(2+2)} = 2.83 \, \text{B.M.} \, (\text{IV}). \]
(C) [CoF$_6$]$^{3-}$: \[ \text{Co}^{3+}: 3d^6 \, (4 \, \text{unpaired electrons}). \]
\[ \mu = \sqrt{4(4+2)} = 4.90 \, \text{B.M.} \, (\text{I}). \]
(D) [Ni(CN)$_4$]$^{2-}$: \[ \text{Ni}^{2+}: 3d^8 \, (\text{low spin, 0 unpaired electrons}). \]
\[ \mu = \sqrt{0(0+2)} = 0.0 \, \text{B.M.} \, (\text{III}). \]
The correct matching is: \[ \text{(A)-(II), (B)-(IV), (C)-(I), (D)-(III)}. \]
Given below are two statements:
Statement I: A homoleptic octahedral complex, formed using monodentate ligands, will not show stereoisomerism
Statement II: cis- and trans-platin are heteroleptic complexes of Pd.
In the light of the above statements, choose the correct answer from the options given below
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to: