Question:

Let $x_{n}=\left(1-\frac{1}{3}\right)^{2}\left(1-\frac{1}{6}\right)^{2}\left(1-\frac{1}{10}\right)^{2} ........ \left(1-\frac{1}{\frac{n\left(n+1\right)}{2}}\right)^2, n \ge 2.$ Then the value of $\displaystyle \lim_{n \to \infty} x_n$ is

Updated On: Apr 27, 2024
  • 44564
  • 44570
  • Jan-81
  • 0
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We have, $x_{n}=\left[\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\right.$
$\left.\left(1-\frac{1}{10}\right) \ldots\left(1-\frac{2}{n(n+1)}\right)\right]^{2}$
$\Rightarrow x_{n} =\left[\prod_{n=2}^{n}\left(\frac{n^{2}+n-2}{n(n+1)}\right)\right]^{2}$
$=\left[\prod_{n=2}^{n}\left(\frac{(n+2)(n-1)}{n(n+1)}\right)\right]^{2}$
$=\left[\prod_{n=2}^{n}\left(\frac{n+2}{n+1}\right) \cdot \prod_{n=2}^{n}\left(\frac{n-1}{n}\right)\right]^{2}$
$=\left[\prod_{n=2}^{n}\left(\frac{n+2}{n+1}\right)\right]^{2}\left[\prod_{n=2}^{n}\left(\frac{n-1}{n}\right)\right]^{2}$
$\Rightarrow x_{n}=\left(\frac{4}{3} \cdot \frac{5}{4} \cdot \frac{6}{5} \ldots \frac{n+2}{n+1}\right)^{2}\left(\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \ldots \frac{n-1}{n}\right)^{2}$
$\Rightarrow x_{n}=\left(\frac{n+2}{3}\right)^{2}\left(\frac{1}{n}\right)^{2}$
$\Rightarrow x_{n}=\frac{1}{9}\left(\frac{n+2}{n}\right)^{2}$
$\Rightarrow x_{n}=\frac{1}{9}\left(1+\frac{2}{n}\right)^{2}$
$\Rightarrow \displaystyle\lim _{n \rightarrow \infty} x_{n}=\frac{1}{9}(1+0)^{2}=\frac{1}{9}$
Was this answer helpful?
0
0

Top Questions on limits and derivatives

View More Questions

Concepts Used:

Limits And Derivatives

Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.

Limit of a Function

Limits Formula:

Limits Formula
 Derivatives of a Function:

derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.

 Derivatives of a Function

Properties of Derivatives:

Properties of Derivatives

Read More: Limits and Derivatives