We are given that the vectors \( \mathbf{u}, \mathbf{v}, \) and \( \mathbf{w} \) satisfy the equation:
\[
\mathbf{u} + \mathbf{v} + \mathbf{w} = 0
\]
From this, we can express \( \mathbf{w} \) as:
\[
\mathbf{w} = -(\mathbf{u} + \mathbf{v})
\]
Next, we are given that \( \mathbf{u} \) and \( \mathbf{v} \) are unit vectors, so:
\[
|\mathbf{u}| = 1 \quad \text{and} \quad |\mathbf{v}| = 1
\]
Also, we are given that \( |\mathbf{w}| = \sqrt{3} \).
Step 1: Find the magnitude of \( \mathbf{w} \)
The magnitude of \( \mathbf{w} \) is:
\[
|\mathbf{w}| = |-(\mathbf{u} + \mathbf{v})| = |\mathbf{u} + \mathbf{v}|
\]
Now, square both sides:
\[
|\mathbf{w}|^2 = |\mathbf{u} + \mathbf{v}|^2
\]
\[
3 = |\mathbf{u}|^2 + |\mathbf{v}|^2 + 2 \mathbf{u} \cdot \mathbf{v}
\]
Since \( |\mathbf{u}|^2 = 1 \) and \( |\mathbf{v}|^2 = 1 \), we get:
\[
3 = 1 + 1 + 2 \mathbf{u} \cdot \mathbf{v}
\]
\[
3 = 2 + 2 \mathbf{u} \cdot \mathbf{v}
\]
\[
2 \mathbf{u} \cdot \mathbf{v} = 1
\]
\[
\mathbf{u} \cdot \mathbf{v} = \frac{1}{2}
\]
Step 2: Find the angle between \( \mathbf{v} \) and \( \mathbf{w} \)
We need to find the angle between \( \mathbf{v} \) and \( \mathbf{w} \). Using the formula for the dot product:
\[
\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos \theta
\]
Substitute the known values:
\[
\mathbf{v} \cdot \mathbf{w} = 1 \times \sqrt{3} \times \cos \theta = \sqrt{3} \cos \theta
\]
Now, substitute \( \mathbf{w} = -(\mathbf{u} + \mathbf{v}) \) into the dot product:
\[
\mathbf{v} \cdot \mathbf{w} = \mathbf{v} \cdot (-(\mathbf{u} + \mathbf{v})) = - (\mathbf{v} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v})
\]
\[
\mathbf{v} \cdot \mathbf{w} = - \left( \frac{1}{2} + 1 \right) = - \frac{3}{2}
\]
Equating the two expressions for \( \mathbf{v} \cdot \mathbf{w} \):
\[
\sqrt{3} \cos \theta = - \frac{3}{2}
\]
\[
\cos \theta = - \frac{1}{2}
\]
Thus, the angle \( \theta \) is:
\[
\theta = 120^\circ
\]
Thus, the angle between \( \mathbf{v} \) and \( \mathbf{w} \) is \( 120^\circ \).