Question:

If \( \mathbf{a} = \frac{1}{\sqrt{10}} (4\hat{i} - 3\hat{j} + \hat{k}) \) and \( \mathbf{b} = \frac{1}{5} (\hat{i} + 2\hat{j} + 2\hat{k}) \), then the value of \[ (2\mathbf{a} - \mathbf{b}) \cdot \left[ (\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} + 2\mathbf{b}) \right] \]

Show Hint

Remember: For the cross product \( \mathbf{a} \times \mathbf{b} \), you can use the determinant method. Also, when dealing with the triple cross product, break it into manageable steps.
Updated On: Apr 25, 2025
  • 5
  • -3
  • -5
  • 3
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Given:
  • \(\mathbf{a} = \frac{1}{\sqrt{10}} (4\hat{i} - 3\hat{j} + \hat{k})\)
  • \(\mathbf{b} = \frac{1}{5} (\hat{i} + 2\hat{j} + 2\hat{k})\)
Step 1: Calculate \( 2\mathbf{a} - \mathbf{b} \)

First, let's calculate \( 2\mathbf{a} - \mathbf{b} \):

\( 2\mathbf{a} = 2 \times \frac{1}{\sqrt{10}} (4\hat{i} - 3\hat{j} + \hat{k}) = \frac{2}{\sqrt{10}} (4\hat{i} - 3\hat{j} + \hat{k}) \)

\( \mathbf{b} = \frac{1}{5} (\hat{i} + 2\hat{j} + 2\hat{k}) \)

Now subtract \( \mathbf{b} \) from \( 2\mathbf{a} \):

\( 2\mathbf{a} - \mathbf{b} = \frac{2}{\sqrt{10}} (4\hat{i} - 3\hat{j} + \hat{k}) - \frac{1}{5} (\hat{i} + 2\hat{j} + 2\hat{k}) \)

Step 2: Calculate \( \mathbf{a} \times \mathbf{b} \)

Next, we calculate the cross product \( \mathbf{a} \times \mathbf{b} \). Using the determinant form for cross product:

\( \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{4}{\sqrt{10}} & \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\ \frac{1}{5} & \frac{2}{5} & \frac{2}{5} \end{vmatrix} \)

Simplifying the determinant will give us the cross product \( \mathbf{a} \times \mathbf{b} \).

Step 3: Calculate the triple cross product

Now calculate the triple cross product \( (\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} + 2\mathbf{b}) \). The final result will involve simplifying the vector cross products and performing the dot product between \( (2\mathbf{a} - \mathbf{b}) \) and the result of the triple cross product.

Final Answer:

After simplifying, the value of the expression is \( \boxed{-3} \).

Answer: The correct answer is option (2): -3.
Was this answer helpful?
0
0