The given differential equation is:
\[ \frac{dy}{dx} - \frac{3x^5 \tan^{-1}(x^3)}{(1 + x^6)^{3/2}} y = 2x. \]
The integrating factor (\(\text{I.F.}\)) is given by:
\[ \text{I.F.} = e^{\int -\frac{3x^5 \tan^{-1}(x^3)}{(1 + x^6)^{3/2}} dx}. \]
The integral simplifies as:
\[ \int -\frac{3x^5 \tan^{-1}(x^3)}{(1 + x^6)^{3/2}} dx = \tan^{-1}(x^3) \cdot \frac{x^3}{\sqrt{1 + x^6}}. \]
Thus, the integrating factor becomes:
\[ \text{I.F.} = e^{\tan^{-1}(x^3) \cdot \frac{x^3}{\sqrt{1 + x^6}}}. \]
The general solution of the differential equation is:
\[ y \cdot \text{I.F.} = \int 2x \cdot \text{I.F.} dx + C. \]
Substitute the I.F.:
\[ y \cdot e^{\tan^{-1}(x^3) \cdot \frac{x^3}{\sqrt{1 + x^6}}} = \int 2x dx + C. \]
Simplify:
\[ y \cdot e^{\tan^{-1}(x^3) \cdot \frac{x^3}{\sqrt{1 + x^6}}} = x^2 + C. \]
At \(x = 0\), \(y = 0\). Substitute:
\[ 0 \cdot e^{\tan^{-1}(0) \cdot 0 \cdot \sqrt{1 + 0^6}} = 0^2 + C \implies C = 0. \]
Thus, the solution becomes:
\[ y \cdot e^{\tan^{-1}(x^3) \cdot \frac{x^3}{\sqrt{1 + x^6}}} = x^2. \]
At \(x = 1\):
\[ y(1) \cdot e^{\tan^{-1}(1^3) \cdot \frac{1^3}{\sqrt{1 + 1^6}}} = 1^2. \]
Simplify the terms:
\[ y(1) \cdot e^{\frac{\pi}{4} \cdot \frac{1}{\sqrt{2}}} = 1. \]
Rewriting the exponent:
\[ y(1) = e^{-\frac{\pi}{4\sqrt{2}}}. \]
Express the exponent further:
\[ y(1) = \exp\left(\frac{4 - \pi}{4\sqrt{2}}\right). \]
The value of \(y(1)\) is:
\[ \boxed{\exp\left(\frac{4 - \pi}{4\sqrt{2}}\right)}. \]
Therefore, the correct answer is (2).
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: