To solve the given problem, we need to find \( y\left( \frac{\pi}{3} \right) \) for the differential equation:
\(\frac{dy}{dx} - y \tan x = 2(x+1) \sec x g(x),\) where \( y(0) = 0 \).
We are given another condition:
\(\int_0^x g(t) \, dt = x - \int_0^x t g(t) \, dt.\)
Using Leibniz's rule, we get:
\(g(x) = 1 - xg(x).\)
Solving for \( g(x) \), we find:
\(g(x) = \frac{1}{x + 1}.\)
\(\frac{dy}{dx} - y \tan x = 2(x+1) \sec x \cdot \frac{1}{x+1} = 2 \sec x.\)
\(\frac{dy}{dx} - y \tan x = 2 \sec x.\)
\(\mu(x) = e^{\int -\tan x \, dx} = e^{-\ln |\sec x|} = \cos x.\)
\(\cos x \frac{dy}{dx} - y \cos x \tan x = 2.\)
\(\frac{d}{dx}(y \cos x) = 2.\)
\(y \cos x = 2x + C.\)
\(0 \cdot 1 = 0 + C \rightarrow C = 0.\)
The solution is now:
\(y \cos x = 2x.\)
\(y \left( \frac{\pi}{3} \right) \cdot \cos \left( \frac{\pi}{3} \right) = 2 \cdot \frac{\pi}{3}.\)
\(\frac{1}{2} y \left( \frac{\pi}{3} \right) = \frac{2\pi}{3} \rightarrow y \left( \frac{\pi}{3} \right) = \frac{4\pi}{3}.\)
Thus, the value of \( y\left( \frac{\pi}{3} \right) \) is \(\frac{4\pi}{3}\).
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 