Question:

If $ x + \frac{1}{x} = 4 $, find the value of $ x^4 + \frac{1}{x^4} $.

Show Hint

To evaluate powers like \( x^4 + \frac{1}{x^4} \), start with known identities: - \( (x + \frac{1}{x})^2 = x^2 + \frac{1}{x^2} + 2 \) - \( (x^2 + \frac{1}{x^2})^2 = x^4 + \frac{1}{x^4} + 2 \)
Updated On: June 02, 2025
  • 194
  • 1945
  • 190
  • 1940
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Use the identity to find \( x^2 + \frac{1}{x^2} \). We are given: \[ x + \frac{1}{x} = 4 \] Squaring both sides: \[ \left(x + \frac{1}{x} \right)^2 = x^2 + 2 + \frac{1}{x^2} = 16 \Rightarrow x^2 + \frac{1}{x^2} = 16 - 2 = 14 \] Step 2: Use identity to find \( x^4 + \frac{1}{x^4} \). We now square again: \[ \left(x^2 + \frac{1}{x^2} \right)^2 = x^4 + 2 + \frac{1}{x^4} \Rightarrow 14^2 = x^4 + \frac{1}{x^4} + 2 \Rightarrow 196 = x^4 + \frac{1}{x^4} + 2 \Rightarrow x^4 + \frac{1}{x^4} = 196 - 2 = 194 \]
Was this answer helpful?
0
0

BITSAT Notification