Let the matrix $ A = \begin{pmatrix} 1 & 0 & 0 \\1 & 0 & 1 \\0 & 1 & 0 \end{pmatrix} $ satisfy $ A^n = A^{n-2} + A^2 - I $ for $ n \geq 3 $. Then the sum of all the elements of $ A^{50} $ is:
Step 1: We are given the matrix equation:
\[ A^n - A^{n-2} = A^2 - I \] and for higher powers, this holds: \[ A^{50} - A^{48} = A^2 - I, \] \[ A^{48} - A^{46} = A^2 - I. \]
Step 2: Now, we calculate \( A^2 \):
\[ A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \]
So, \( A^2 = I \), the identity matrix.
Step 3: Using the result to compute \( A^{50} \):
\[ A^{50} - A^2 = 24(A^2 - I) \] Thus: \[ A^{50} = 25A^2 - 24I. \]
Step 4: Final Matrix Calculation:
Substituting \( A^2 = I \) into the expression: \[ 25A^2 - 24I = 25 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - 24 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 25 & 0 \\ 0 & 25 \end{pmatrix} - \begin{pmatrix} 24 & 0 \\ 0 & 24 \end{pmatrix}. \] This simplifies to: \[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \]
Step 5: Summing All Elements:
The sum of all the elements is: \[ 1 + 25 + 25 + 1 + 1 + 1 = 53. \]
For the matrix [A] given below, the transpose is __________.
\[ A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 4 & 5 \\ 4 & 3 & 2 \end{bmatrix} \]
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( A \) be a \( 3 \times 3 \) real matrix such that \[ A^{2}(A - 2I) - 4(A - I) = O, \] where \( I \) and \( O \) are the identity and null matrices, respectively.
If \[ A^{5} = \alpha A^{2} + \beta A + \gamma I, \] where \( \alpha, \beta, \gamma \) are real constants, then \( \alpha + \beta + \gamma \) is equal to:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to