Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Given the equation \( A^m + A^m = 3I - A^{-6} \), where:
\(A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}\), we need to find the integer set \( S \) and determine \( n(S) \).
Step 1: Analyze the Problem
\(A^m + A^m = 2A^m = 3I - A^{-6}\). Our goal is to find such \( m \) that makes the equation hold true.
Step 2: Compute \( A^2 \)
\(A^2 = A \cdot A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix} \)
Continue with \( A^3 = A^2 \cdot A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
Step 3: Calculate \( A^{-6} \)
Given \( A^3 = I \), then \( A^{-3} = A^0 = I \), hence \( A^{-6} = (A^{-3})^2 = I \).
Step 4: Solve the Equation
Original equation becomes:
\( 2A^m = 3I - A^{-6} = 2I \)
From \( A^m = I \), solutions are \( m = 0 \) or \( m = 3 \), as indices repeat every 3.
Step 5: Determine \( n(S) \)
\(S = \{0, 3\}\), hence \( n(S) = 2 \).
The result is consistent with the given range (2,2).
Conclusion
Thus, the number of elements \( n(S) \) is equal to 2, and it falls within the specified range.
Given matrix:
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]
Computing successive powers:
\[ A^2 = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}, \quad A^3 = \begin{bmatrix} 4 & -3 \\ 3 & -2 \end{bmatrix}, \quad A^4 = \begin{bmatrix} 5 & -4 \\ 4 & -3 \end{bmatrix} \]
Continuing further:
\[ A^6 = \begin{bmatrix} 7 & -6 \\ 6 & -5 \end{bmatrix} \]
For general exponentiation:
\[ A^m = \begin{bmatrix} m+1 & -m \\ m & -m+1 \end{bmatrix} \]
For squared exponentiation:
\[ A^{m^2} = \begin{bmatrix} m^2 +1 & -m^2 \\ m^2 & -(m^2-1) \end{bmatrix} \]
Adding the two matrices:
\[ A^{m^2} + A^m = 3I - A^{-6} \]
\[ \begin{bmatrix} m^2+1 & -m^2 \\ m^2 & -(m^2-1) \end{bmatrix} + \begin{bmatrix} m+1 & -m \\ m & -m+1 \end{bmatrix} \]
Substituting values:
\[ = 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -5 & 6 \\ -6 & 7 \end{bmatrix} \]
\[ = \begin{bmatrix} 8 & -6 \\ 6 & -4 \end{bmatrix} \]
Equating to given conditions:
\[ m^2 + 1 + m + 1 = 8 \]
\[ m^2 + m -6 = 0 \Rightarrow m = -3, 2 \]
Thus, the number of solutions:
\[ n(s) = 2 \]
For the matrix [A] given below, the transpose is __________.
\[ A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 4 & 5 \\ 4 & 3 & 2 \end{bmatrix} \]
Let the matrix $ A = \begin{pmatrix} 1 & 0 & 0 \\1 & 0 & 1 \\0 & 1 & 0 \end{pmatrix} $ satisfy $ A^n = A^{n-2} + A^2 - I $ for $ n \geq 3 $. Then the sum of all the elements of $ A^{50} $ is:
Let \( A \) be a \( 3 \times 3 \) real matrix such that \[ A^{2}(A - 2I) - 4(A - I) = O, \] where \( I \) and \( O \) are the identity and null matrices, respectively.
If \[ A^{5} = \alpha A^{2} + \beta A + \gamma I, \] where \( \alpha, \beta, \gamma \) are real constants, then \( \alpha + \beta + \gamma \) is equal to:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.