Question:

Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where

\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]

Then \( n(S) \) is equal to ______.

Updated On: Nov 7, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 2

Approach Solution - 1

Given the equation \( A^m + A^m = 3I - A^{-6} \), where:

\(A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}\), we need to find the integer set \( S \) and determine \( n(S) \).

Step 1: Analyze the Problem

\(A^m + A^m = 2A^m = 3I - A^{-6}\). Our goal is to find such \( m \) that makes the equation hold true.

Step 2: Compute \( A^2 \)

\(A^2 = A \cdot A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix} \)

Continue with \( A^3 = A^2 \cdot A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)

Step 3: Calculate \( A^{-6} \)

Given \( A^3 = I \), then \( A^{-3} = A^0 = I \), hence \( A^{-6} = (A^{-3})^2 = I \).

Step 4: Solve the Equation

Original equation becomes:

\( 2A^m = 3I - A^{-6} = 2I \)

From \( A^m = I \), solutions are \( m = 0 \) or \( m = 3 \), as indices repeat every 3.

Step 5: Determine \( n(S) \)

\(S = \{0, 3\}\), hence \( n(S) = 2 \).

The result is consistent with the given range (2,2).

Conclusion

Thus, the number of elements \( n(S) \) is equal to 2, and it falls within the specified range.

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given matrix:

\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]

Computing successive powers:

\[ A^2 = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}, \quad A^3 = \begin{bmatrix} 4 & -3 \\ 3 & -2 \end{bmatrix}, \quad A^4 = \begin{bmatrix} 5 & -4 \\ 4 & -3 \end{bmatrix} \]

Continuing further:

\[ A^6 = \begin{bmatrix} 7 & -6 \\ 6 & -5 \end{bmatrix} \]

For general exponentiation:

\[ A^m = \begin{bmatrix} m+1 & -m \\ m & -m+1 \end{bmatrix} \]

For squared exponentiation:

\[ A^{m^2} = \begin{bmatrix} m^2 +1 & -m^2 \\ m^2 & -(m^2-1) \end{bmatrix} \]

Adding the two matrices:

\[ A^{m^2} + A^m = 3I - A^{-6} \]

\[ \begin{bmatrix} m^2+1 & -m^2 \\ m^2 & -(m^2-1) \end{bmatrix} + \begin{bmatrix} m+1 & -m \\ m & -m+1 \end{bmatrix} \]

Substituting values:

\[ = 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -5 & 6 \\ -6 & 7 \end{bmatrix} \]

\[ = \begin{bmatrix} 8 & -6 \\ 6 & -4 \end{bmatrix} \]

Equating to given conditions:

\[ m^2 + 1 + m + 1 = 8 \]

\[ m^2 + m -6 = 0 \Rightarrow m = -3, 2 \]

Thus, the number of solutions:

\[ n(s) = 2 \]

Was this answer helpful?
0
0

Top Questions on Matrix Algebra

View More Questions