Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Given the equation \( A^m + A^m = 3I - A^{-6} \), where:
\(A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}\), we need to find the integer set \( S \) and determine \( n(S) \).
Step 1: Analyze the Problem
\(A^m + A^m = 2A^m = 3I - A^{-6}\). Our goal is to find such \( m \) that makes the equation hold true.
Step 2: Compute \( A^2 \)
\(A^2 = A \cdot A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix} \)
Continue with \( A^3 = A^2 \cdot A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
Step 3: Calculate \( A^{-6} \)
Given \( A^3 = I \), then \( A^{-3} = A^0 = I \), hence \( A^{-6} = (A^{-3})^2 = I \).
Step 4: Solve the Equation
Original equation becomes:
\( 2A^m = 3I - A^{-6} = 2I \)
From \( A^m = I \), solutions are \( m = 0 \) or \( m = 3 \), as indices repeat every 3.
Step 5: Determine \( n(S) \)
\(S = \{0, 3\}\), hence \( n(S) = 2 \).
The result is consistent with the given range (2,2).
Conclusion
Thus, the number of elements \( n(S) \) is equal to 2, and it falls within the specified range.
Given matrix:
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]
Computing successive powers:
\[ A^2 = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}, \quad A^3 = \begin{bmatrix} 4 & -3 \\ 3 & -2 \end{bmatrix}, \quad A^4 = \begin{bmatrix} 5 & -4 \\ 4 & -3 \end{bmatrix} \]
Continuing further:
\[ A^6 = \begin{bmatrix} 7 & -6 \\ 6 & -5 \end{bmatrix} \]
For general exponentiation:
\[ A^m = \begin{bmatrix} m+1 & -m \\ m & -m+1 \end{bmatrix} \]
For squared exponentiation:
\[ A^{m^2} = \begin{bmatrix} m^2 +1 & -m^2 \\ m^2 & -(m^2-1) \end{bmatrix} \]
Adding the two matrices:
\[ A^{m^2} + A^m = 3I - A^{-6} \]
\[ \begin{bmatrix} m^2+1 & -m^2 \\ m^2 & -(m^2-1) \end{bmatrix} + \begin{bmatrix} m+1 & -m \\ m & -m+1 \end{bmatrix} \]
Substituting values:
\[ = 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -5 & 6 \\ -6 & 7 \end{bmatrix} \]
\[ = \begin{bmatrix} 8 & -6 \\ 6 & -4 \end{bmatrix} \]
Equating to given conditions:
\[ m^2 + 1 + m + 1 = 8 \]
\[ m^2 + m -6 = 0 \Rightarrow m = -3, 2 \]
Thus, the number of solutions:
\[ n(s) = 2 \]
Let \( A \) be a \( 3 \times 3 \) real matrix such that \[ A^{2}(A - 2I) - 4(A - I) = O, \] where \( I \) and \( O \) are the identity and null matrices, respectively.
If \[ A^{5} = \alpha A^{2} + \beta A + \gamma I, \] where \( \alpha, \beta, \gamma \) are real constants, then \( \alpha + \beta + \gamma \) is equal to:
Let the matrix $ A = \begin{pmatrix} 1 & 0 & 0 \\1 & 0 & 1 \\0 & 1 & 0 \end{pmatrix} $ satisfy $ A^n = A^{n-2} + A^2 - I $ for $ n \geq 3 $. Then the sum of all the elements of $ A^{50} $ is:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.


In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by: