Step 1: Analyze the expression for \( C \).
\[
C = BA + 2B - 2A + 4I
\]
To find the inverse of \( C \), we need to check if we can use the given equations for \( A \) and \( B \). Let's start by manipulating the equations. From equation (1), we have:
\[
A^2 = -5A - 5I
\]
From equation (2), we have:
\[
B^2 = -3B - I
\]
Substituting these expressions into \( C \) and simplifying, we arrive at the solution that the inverse of \( C \) is:
\[
C^{-1} = AB + A + 3B + 3I
\]
Thus, the correct answer is \( AB + A + 3B + 3I \).
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( A \) be a \( 3 \times 3 \) real matrix such that \[ A^{2}(A - 2I) - 4(A - I) = O, \] where \( I \) and \( O \) are the identity and null matrices, respectively.
If \[ A^{5} = \alpha A^{2} + \beta A + \gamma I, \] where \( \alpha, \beta, \gamma \) are real constants, then \( \alpha + \beta + \gamma \) is equal to:
Let the matrix $ A = \begin{pmatrix} 1 & 0 & 0 \\1 & 0 & 1 \\0 & 1 & 0 \end{pmatrix} $ satisfy $ A^n = A^{n-2} + A^2 - I $ for $ n \geq 3 $. Then the sum of all the elements of $ A^{50} $ is:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
"In order to be a teacher, one must graduate from college. All poets are poor. Some Mathematicians are poets. No college graduate is poor."
Which of the following is true?
Five friends A, B, C, D, and E are sitting in a row facing north, but not necessarily in the same order:
B is to the immediate left of C
E is not at any of the ends
D is to the right of E but not next to C
A is at one of the ends
Who is sitting in the middle?
How many triangles are there in the figure given below? 