Step 1: Analyze the expression for \( C \).
\[
C = BA + 2B - 2A + 4I
\]
To find the inverse of \( C \), we need to check if we can use the given equations for \( A \) and \( B \). Let's start by manipulating the equations. From equation (1), we have:
\[
A^2 = -5A - 5I
\]
From equation (2), we have:
\[
B^2 = -3B - I
\]
Substituting these expressions into \( C \) and simplifying, we arrive at the solution that the inverse of \( C \) is:
\[
C^{-1} = AB + A + 3B + 3I
\]
Thus, the correct answer is \( AB + A + 3B + 3I \).
If \( x, y, z \) \(\text{ are the three cube roots of 27, then the determinant of the matrix}\) \[ \begin{pmatrix} x & y & z \\ y & z & x \\ z & x & y \end{pmatrix} \] \(\text{is:}\)
Let the matrix $ A = \begin{pmatrix} 1 & 0 & 0 \\1 & 0 & 1 \\0 & 1 & 0 \end{pmatrix} $ satisfy $ A^n = A^{n-2} + A^2 - I $ for $ n \geq 3 $. Then the sum of all the elements of $ A^{50} $ is:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
A remote island has a unique social structure. Individuals are either "Truth-tellers" (who always speak the truth) or "Tricksters" (who always lie). You encounter three inhabitants: X, Y, and Z.
X says: "Y is a Trickster"
Y says: "Exactly one of us is a Truth-teller."
What can you definitively conclude about Z?
Consider the following statements followed by two conclusions.
Statements: 1. Some men are great. 2. Some men are wise.
Conclusions: 1. Men are either great or wise. 2. Some men are neither great nor wise. Choose the correct option: