We are tasked with finding the area of the quadrilateral \( ACBD \) formed by the intersection of a circle and two lines. Let us proceed step by step:
1. Given Information:
The circle has the equation:
\( x^2 + y^2 = 4 \)
It is intersected by the lines:
\( x = y \) and \( x + y = 1 \).
2. Intersection Points:
(a) Solving \( x = y \) with the circle:
Substitute \( x = y \) into \( x^2 + y^2 = 4 \):
\( x^2 + x^2 = 4 \)
\( 2x^2 = 4 \)
\( x^2 = 2 \)
\( x = \pm\sqrt{2} \).
Thus, the points of intersection are:
\( C (\sqrt{2}, \sqrt{2}) \) and \( D (-\sqrt{2}, -\sqrt{2}) \).
(b) Solving \( x + y = 1 \) with the circle:
Rewrite \( x + y = 1 \) as \( y = 1 - x \), and substitute into \( x^2 + y^2 = 4 \):
\( x^2 + (1 - x)^2 = 4 \)
\( x^2 + (1 - 2x + x^2) = 4 \)
\( 2x^2 - 2x + 1 = 4 \)
\( 2x^2 - 2x - 3 = 0 \)
Solve using the quadratic formula:
\( x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(2)(-3)}}{2(2)} \)
\( x = \frac{2 \pm \sqrt{4 + 24}}{4} \)
\( x = \frac{2 \pm \sqrt{28}}{4} \)
\( x = \frac{1 \pm \sqrt{7}}{2} \).
Thus, the points of intersection are:
\( A \left(\frac{1+\sqrt{7}}{2}, \frac{1-\sqrt{7}}{2}\right) \) and \( B \left(\frac{1-\sqrt{7}}{2}, \frac{1+\sqrt{7}}{2}\right) \).
3. Area of Quadrilateral \( ACBD \):
The quadrilateral \( ACBD \) can be divided into two triangles: \( \triangle ACD \) and \( \triangle BCD \). Since the diagonals of the quadrilateral intersect at right angles, the area of \( ACBD \) is twice the area of \( \triangle BCD \):
\( \text{Area of } ACBD = 2 \times \text{Area of } \triangle BCD \).
(a) Area of \( \triangle BCD \):
The area of a triangle given vertices \( (x_1, y_1) \), \( (x_2, y_2) \), and \( (x_3, y_3) \) is:
\( \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \).
Substitute the coordinates of \( B \), \( C \), and \( D \):
\( B \left(\frac{1-\sqrt{7}}{2}, \frac{1+\sqrt{7}}{2}\right) \), \( C (\sqrt{2}, \sqrt{2}) \), \( D (-\sqrt{2}, -\sqrt{2}) \):
\( \text{Area of } \triangle BCD = \frac{1}{2} \left| \sqrt{2} \left(\frac{1+\sqrt{7}}{2} - (-\sqrt{2})\right) + \frac{1-\sqrt{7}}{2} \left(-\sqrt{2} - \sqrt{2}\right) + (-\sqrt{2}) \left(\sqrt{2} - \frac{1+\sqrt{7}}{2}\right) \right| \).
Simplify the determinant:
\( \text{Area of } \triangle BCD = \frac{1}{2} \left| \sqrt{2} \cdot \sqrt{2} + \frac{1-\sqrt{7}}{2} \cdot (-2\sqrt{2}) + (-\sqrt{2}) \cdot \left(\sqrt{2} - \frac{1+\sqrt{7}}{2}\right) \right| \).
After simplifications, the area evaluates to:
\( \text{Area of } \triangle BCD = \sqrt{14} \).
(b) Total Area of \( ACBD \):
Since \( \text{Area of } ACBD = 2 \times \text{Area of } \triangle BCD \):
\( \text{Area of } ACBD = 2 \times \sqrt{14} = 2\sqrt{14} \).
Final Answer:
The area of the quadrilateral \( ACBD \) is \( \boxed{2\sqrt{14}} \).
Let $C$ be the circle $x^2 + (y - 1)^2 = 2$, $E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on the $x$-axis and $y$-axis respectively. Let the straight line $x + y = 3$ touch the curves $C$, $E_1$, and $E_2$ at $P(x_1, y_1)$, $Q(x_2, y_2)$, and $R(x_3, y_3)$ respectively. Given that $P$ is the mid-point of the line segment $QR$ and $PQ = \frac{2\sqrt{2}}{3}$, the value of $9(x_1 y_1 + x_2 y_2 + x_3 y_3)$ is equal to
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: