Mass = \( (28 \pm 0.01) \, \text{g} \), Volume = \( (5 \pm 0.1) \, \text{cm}^3 \). What is the percentage error in density?
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
Let $C$ be the circle $x^2 + (y - 1)^2 = 2$, $E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on the $x$-axis and $y$-axis respectively. Let the straight line $x + y = 3$ touch the curves $C$, $E_1$, and $E_2$ at $P(x_1, y_1)$, $Q(x_2, y_2)$, and $R(x_3, y_3)$ respectively. Given that $P$ is the mid-point of the line segment $QR$ and $PQ = \frac{2\sqrt{2}}{3}$, the value of $9(x_1 y_1 + x_2 y_2 + x_3 y_3)$ is equal to
Let $A$ and $B$ be two distinct points on the line $L: \frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2\sqrt{17}$ from the foot of perpendicular drawn from the point $(1, 2, 3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{OA} \cdot \overrightarrow{OB}$ is equal to:
Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $f(0) = 1$ and $f(2x) - f(x) = x$ for all $x \in \mathbb{R}$. If $\lim_{n \to \infty} \left\{ f(x) - f\left( \frac{x}{2^n} \right) \right\} = G(x)$, then $\sum_{r=1}^{10} G(r^2)$ is equal to