Question:

Let the function $ f(x) = \frac{x}{3} + \frac{3}{x} + 3 $, $ x \neq 0 $, be strictly increasing in $ (-\infty, \alpha_1) \cup (\alpha_2, \infty) $ and strictly decreasing in $ (\alpha_3, \alpha_4) \cup (\alpha_5, \alpha_s) $. Then $ \sum_{i=1}^{5} \alpha_i^2 $ is equal to:

Show Hint

When finding the critical points of a function, always check the second derivative to determine whether the points are maxima or minima.
Updated On: Apr 12, 2025
  • \( 36 \)
  • \( 28 \)
  • \( 48 \)
  • \( 40 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

1. Find the derivative of the function
$f(x) = \frac{x}{3} + \frac{3}{x} + 3$
$f'(x) = \frac{1}{3} - \frac{3}{x^2}$

2. Find the critical points
The critical points are where $f'(x) = 0$ or $f'(x)$ is undefined.
$f'(x) = 0$: $\frac{1}{3} - \frac{3}{x^2} = 0 \implies \frac{1}{3} = \frac{3}{x^2} \implies x^2 = 9 \implies x = \pm 3$
$f'(x)$ is undefined: $x = 0$ (since we have $\frac{3}{x^2}$)

3. Determine the intervals of increasing and decreasing
We have critical points at $x = -3, 0$, and $3$.
This divides the number line into the following intervals: $(-\infty, -3)$, $(-3, 0)$, $(0, 3)$, $(3, \infty)$.
We test a value in each interval to determine the sign of $f'(x)$.

  • $(-\infty, -3)$: Test $x = -4$.
    $f'(-4) = \frac{1}{3} - \frac{3}{16} = \frac{16}{48} - \frac{9}{48} = \frac{7}{48} > 0$ (Increasing)
  • $(-3, 0)$: Test $x = -1$.
    $f'(-1) = \frac{1}{3} - \frac{3}{1} = \frac{1}{3} - 3 = -\frac{8}{3} < 0$ (Decreasing)
  • $(0, 3)$: Test $x = 1$.
    $f'(1) = \frac{1}{3} - \frac{3}{1} = \frac{1}{3} - 3 = -\frac{8}{3} < 0$ (Decreasing)
  • $(3, \infty)$: Test $x = 4$.
    $f'(4) = \frac{1}{3} - \frac{3}{16} = \frac{16}{48} - \frac{9}{48} = \frac{7}{48} > 0$ (Increasing)

4. Identify the intervals and values according to the problem statement

  • $f(x)$ is strictly increasing in $(-\infty, \alpha_1)$ and $(\alpha_2, \infty)$.
  • $f(x)$ is strictly decreasing in $(\alpha_3, \alpha_4)$ and $(\alpha_4, \alpha_5)$.

From our analysis above:

  • $\alpha_1 = -3$
  • $\alpha_2 = 3$
  • $\alpha_3 = -3$
  • $\alpha_4 = 0$
  • $\alpha_5 = 3$

Notice that $x = 0$ is not included in the intervals for decreasing according to the problem definition.

5. Calculate the sum of the squares
$\sum(\alpha_i^2) = \alpha_1^2 + \alpha_2^2 + \alpha_3^2 + \alpha_4^2 + \alpha_5^2 = (-3)^2 + (3)^2 + (-3)^2 + (0)^2 + (3)^2 = 9 + 9 + 9 + 0 + 9 = 36$
Answer: The value of $\sum(\alpha_i^2)$ is 36.
The correct option is 1.

Was this answer helpful?
0
0