1. Find the derivative of the function
$f(x) = \frac{x}{3} + \frac{3}{x} + 3$
$f'(x) = \frac{1}{3} - \frac{3}{x^2}$
2. Find the critical points
The critical points are where $f'(x) = 0$ or $f'(x)$ is undefined.
$f'(x) = 0$: $\frac{1}{3} - \frac{3}{x^2} = 0 \implies \frac{1}{3} = \frac{3}{x^2} \implies x^2 = 9 \implies x = \pm 3$
$f'(x)$ is undefined: $x = 0$ (since we have $\frac{3}{x^2}$)
3. Determine the intervals of increasing and decreasing
We have critical points at $x = -3, 0$, and $3$.
This divides the number line into the following intervals: $(-\infty, -3)$, $(-3, 0)$, $(0, 3)$, $(3, \infty)$.
We test a value in each interval to determine the sign of $f'(x)$.
4. Identify the intervals and values according to the problem statement
From our analysis above:
Notice that $x = 0$ is not included in the intervals for decreasing according to the problem definition.
5. Calculate the sum of the squares
$\sum(\alpha_i^2) = \alpha_1^2 + \alpha_2^2 + \alpha_3^2 + \alpha_4^2 + \alpha_5^2 = (-3)^2 + (3)^2 + (-3)^2 + (0)^2 + (3)^2 = 9 + 9 + 9 + 0 + 9 = 36$
Answer: The value of $\sum(\alpha_i^2)$ is 36.
The correct option is 1.
Let the area of the bounded region $ \{(x, y) : 0 \leq 9x \leq y^2, y \geq 3x - 6 \ be $ A $. Then 6A is equal to:
Consider \[ I = \frac{1}{2\pi i} \int_C \frac{\sin z}{1 - \cos(z^3)} \, dz, \] where \( C = \{ z \in \mathbb{C} : z = x + iy, |x| + |y| = 1, x, y \in \mathbb{R} \} \) is oriented positively as a simple closed curve. Then, the value of \( 120I \) is equal to _________ (in integer).