\(\frac{x}{-c} + \frac{y}{-c/b} = 1\)
Area of triangle \( = \frac{1}{2} \left| \frac{c^2}{b} \right| = 48 \) \(\left| \frac{c^2}{b} \right| = 96 \)
\(\Rightarrow -c = - \frac{c}{b} \) \(\Rightarrow b = 1 \quad \Rightarrow c^2 = 96 \) \(\Rightarrow b^2 + c^2 = 97 \)
If the four distinct points $ (4, 6) $, $ (-1, 5) $, $ (0, 0) $ and $ (k, 3k) $ lie on a circle of radius $ r $, then $ 10k + r^2 $ is equal to
The shortest distance between the curves $ y^2 = 8x $ and $ x^2 + y^2 + 12y + 35 = 0 $ is:
Let the equation $ x(x+2) * (12-k) = 2 $ have equal roots. The distance of the point $ \left(k, \frac{k}{2}\right) $ from the line $ 3x + 4y + 5 = 0 $ is
Consider the following molecules:
The order of rate of hydrolysis is: