Let \( Z = x + iy \).
\(\text{Then } (x - 1)^2 + y^2 = 1 \quad \cdots (1)\) \(\text{and } (\sqrt{2} - 1)(2x) + i(2y) = 2\sqrt{2}\)
\(\implies (\sqrt{2} - 1)x + y = \sqrt{2} \quad \cdots (2)\)
Solving (1) and (2), we get:
\(x = 1 \quad \text{or} \quad x = -\frac{1}{\sqrt{2}} \quad \cdots (3)\)
On solving (3) with (2), we get:
\(\text{For } x = 1 \implies y = 1 \implies Z_1 = 1 + i\)
and for
\(x = -\frac{1}{\sqrt{2}} \implies y = \sqrt{2} - \frac{1}{\sqrt{2}} \implies Z_2 = \left( -\frac{1}{\sqrt{2}} \right) + i \left( \sqrt{2} - \frac{1}{\sqrt{2}} \right).\)
Now:
\(\sqrt{2} |Z_1 - Z_2|^2\)
\(= \left| \left( 1 + \frac{1}{\sqrt{2}} \right) \sqrt{2} + i\left( 1 - (\sqrt{2} - 1) \right) \right|^2\)
\(= |(\sqrt{2})^2| = 2\)
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: