Let \( Z = x + iy \).
\(\text{Then } (x - 1)^2 + y^2 = 1 \quad \cdots (1)\) \(\text{and } (\sqrt{2} - 1)(2x) + i(2y) = 2\sqrt{2}\)
\(\implies (\sqrt{2} - 1)x + y = \sqrt{2} \quad \cdots (2)\)
Solving (1) and (2), we get:
\(x = 1 \quad \text{or} \quad x = -\frac{1}{\sqrt{2}} \quad \cdots (3)\)
On solving (3) with (2), we get:
\(\text{For } x = 1 \implies y = 1 \implies Z_1 = 1 + i\)
and for
\(x = -\frac{1}{\sqrt{2}} \implies y = \sqrt{2} - \frac{1}{\sqrt{2}} \implies Z_2 = \left( -\frac{1}{\sqrt{2}} \right) + i \left( \sqrt{2} - \frac{1}{\sqrt{2}} \right).\)
Now:
\(\sqrt{2} |Z_1 - Z_2|^2\)
\(= \left| \left( 1 + \frac{1}{\sqrt{2}} \right) \sqrt{2} + i\left( 1 - (\sqrt{2} - 1) \right) \right|^2\)
\(= |(\sqrt{2})^2| = 2\)
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: