Let \(S ={ (\begin{matrix} -1 & 0 \\ a & b \end{matrix}), a,b, ∈(1,2,3,.....100)}\) and
let \(T_n = {A ∈ S : A^{n(n + 1)} = I}. \)
Then the number of elements in \(\bigcap_{n=1}^{100}\) \(T_n \) is
The correct answer is 100
\(S ={ (\begin{matrix} -1 & 0 \\ a & b \end{matrix}), a,b, ∈(1,2,3,.....100)}\)
\(∴ A =\) \((\begin{matrix} -1 & 0 \\ a & b \end{matrix})\)
then even powers of A as
\(A(\begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix})\)
if b = 1 and a ∈ {1,….., 100}
Here, n(n + 1) is always even.
∴ \(T_1, T_2, T_3\), …, \(T_n\) are all I for b = 1 and each value of a.
\(∴\) \(\bigcap_{n=1}^{100}\) \(T_n = 100\)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).
Cartesian products of sets here are explained with the help of an example. Consider A and B to be the 2 sets such that A is a set of 3 colors of tables and B is a set of 3 colors of chairs objects, i.e.,
A = {red, blue, purple}
B = {brown, green, yellow},
Now let us find the number of pairs of colored objects that we can make from a set of tables and chairs in various combinations. They can be grouped as given below:
(red, brown), (red, green), (red, yellow), (blue, brown), (blue, green), (blue, yellow), (purple, brown), (purple, green), (purple, yellow)
There are 9 such pairs in the Cartesian product since 3 elements are there in each of the defined sets A and B. The above-ordered pairs shows the definition for the Cartesian product of sets given. This product is resembled by “A × B”.