If the equations \( x = t^2 + t + 1, \quad y = t^2 - t + 1 \) represent a curve \( C \) with parameter \( t \), then the Cartesian equation of \( C \) is:
Show Hint
Eliminate parameter \( t \) using \( x \pm y \) to get expressions for \( t \) and \( t^2 \), then substitute and simplify.
Given:
\[
x = t^2 + t + 1,\quad y = t^2 - t + 1
\]
Add:
\[
x + y = 2t^2 + 2 \Rightarrow t^2 = \dfrac{x + y - 2}{2}
\]
Subtract:
\[
x - y = 2t \Rightarrow t = \dfrac{x - y}{2}
\]
Now express in terms of \( x \) and \( y \):
\[
t = \dfrac{x - y}{2},\quad t^2 = \dfrac{x + y - 2}{2}
\]
Now substitute into:
\[
x = t^2 + t + 1,\quad y = t^2 - t + 1
\]
Using above values and simplifying gives the final Cartesian equation:
\[
x^2 - 2xy + y^2 - 2x - 2y + 4 = 0
\]
% Final Answer
\[
\boxed{x^2 - 2xy + y^2 - 2x - 2y + 4 = 0}
\]