The Correct Option is (C): $f$ is BOTH one-one and onto
Let \(S ={ (\begin{matrix} -1 & 0 \\ a & b \end{matrix}), a,b, ∈(1,2,3,.....100)}\) and
let \(T_n = {A ∈ S : A^{n(n + 1)} = I}. \)
Then the number of elements in \(\bigcap_{n=1}^{100}\) \(T_n \) is
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
Cartesian products of sets here are explained with the help of an example. Consider A and B to be the 2 sets such that A is a set of 3 colors of tables and B is a set of 3 colors of chairs objects, i.e.,
A = {red, blue, purple}
B = {brown, green, yellow},
Now let us find the number of pairs of colored objects that we can make from a set of tables and chairs in various combinations. They can be grouped as given below:
(red, brown), (red, green), (red, yellow), (blue, brown), (blue, green), (blue, yellow), (purple, brown), (purple, green), (purple, yellow)
There are 9 such pairs in the Cartesian product since 3 elements are there in each of the defined sets A and B. The above-ordered pairs shows the definition for the Cartesian product of sets given. This product is resembled by “A × B”.