The Correct Option is (C): $f$ is BOTH one-one and onto
Let \(S ={ (\begin{matrix} -1 & 0 \\ a & b \end{matrix}), a,b, ∈(1,2,3,.....100)}\) and
let \(T_n = {A ∈ S : A^{n(n + 1)} = I}. \)
Then the number of elements in \(\bigcap_{n=1}^{100}\) \(T_n \) is
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Cartesian products of sets here are explained with the help of an example. Consider A and B to be the 2 sets such that A is a set of 3 colors of tables and B is a set of 3 colors of chairs objects, i.e.,
A = {red, blue, purple}
B = {brown, green, yellow},
Now let us find the number of pairs of colored objects that we can make from a set of tables and chairs in various combinations. They can be grouped as given below:
(red, brown), (red, green), (red, yellow), (blue, brown), (blue, green), (blue, yellow), (purple, brown), (purple, green), (purple, yellow)
There are 9 such pairs in the Cartesian product since 3 elements are there in each of the defined sets A and B. The above-ordered pairs shows the definition for the Cartesian product of sets given. This product is resembled by “A × B”.